Calculate the sum of strided array elements, ignoring NaN values.
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Calculate the sum of strided array elements, ignoring
NaN
values.
bash
npm install @stdlib/blas-ext-base-gnansum
script
tag without installation and bundlers, use the [ES Module][es-module] available on the [esm
][esm-url] branch (see [README][esm-readme]).deno
][deno-url] branch (see [README][deno-readme] for usage intructions).umd
][umd-url] branch (see [README][umd-readme]).javascript
var gnansum = require( '@stdlib/blas-ext-base-gnansum' );
NaN
values.javascript
var x = [ 1.0, -2.0, NaN, 2.0 ];
var v = gnansum( x.length, x, 1 );
// returns 1.0
Array
][mdn-array] or [typed array
][mdn-typed-array].x
.N
and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of every other element:javascript
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ];
var v = gnansum( 5, x, 2 );
// returns 5.0
typed array
][mdn-typed-array] views.javascript
var Float64Array = require( '@stdlib/array-float64' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = gnansum( 4, x1, 2 );
// returns 5.0
NaN
values and using alternative indexing semantics.javascript
var x = [ 1.0, -2.0, NaN, 2.0 ];
var v = gnansum.ndarray( x.length, x, 1, 0 );
// returns 1.0
x
.typed array
][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other element starting from the second element:javascript
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];
var v = gnansum.ndarray( 5, x, 2, 1 );
// returns 5.0
N <= 0
, both functions return 0.0
.@stdlib/array-base/accessor
][@stdlib/array/base/accessor])dnansum
][@stdlib/blas/ext/base/dnansum], [snansum
][@stdlib/blas/ext/base/snansum], etc.) are likely to be significantly more performant.javascript
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var bernoulli = require( '@stdlib/random-base-bernoulli' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var gnansum = require( '@stdlib/blas-ext-base-gnansum' );
function rand() {
if ( bernoulli( 0.7 ) > 0 ) {
return discreteUniform( 0, 100 );
}
return NaN;
}
var x = filledarrayBy( 10, 'float64', rand );
console.log( x );
var v = gnansum( x.length, x, 1 );
console.log( v );