Handwritten Bangla Symbol Recognition With DenseNet
Version: 0.0.3
Author : Md. Nazmuddoha Ansary
Python : 3.6.8
'অ','আ','ই','ঈ','উ','ঊ',
'ঋ','এ','ঐ','ও','ঔ',
'ক','খ','গ','ঘ','ঙ',
'চ','ছ','জ','ঝ','ঞ',
'ট','ঠ','ড','ঢ','ণ',
'ত','থ','দ','ধ','ন',
'প','ফ','ব','ভ','ম',
'য','র','ল',
'শ','ষ','স','হ',
'ড়','ঢ়','য়',
'ৎ','ং','ঃ','ঁ'
'ঁ'
The model is based on the original paper:Densely Connected Convolutional Networks
Authors and Researchers: Gao Huang ; Zhuang Liu ; Laurens van der Maaten ; Kilian Q. Weinberger
The paper introduces Dense Blocks within the traditional convolutional neural network architechture.
The composite layers can also contain bottoleneck layers
As compared to well established CNN models (like : FractNet or ResNet) DenseNet has:
* Less number of feature vector
* Low information bottoleneck
* Better Handling Of the *vanishing gradient* problem
CMATERdb 3.1.2: Handwritten Bangla basic-character database
Data Sample
Established Results
From:Alom et. al. 2018
Keras==2.2.5
numpy==1.16.4
tensorflow==1.13.1
Test data Prediction Accuracy [F1 accuracy]: 98.56666666666666
Flask App Deployement
For Deployment of the Saved Model python-flask is used.
The deployment is very simple and to be honest can be more optimizedSegmentation (incomplete)
The final goal of the segmentation script is to separate:
The implemented model architechture can be found at /info/model.png
Loading the image may take time due to speed and size