项目作者: Jackiexiao

项目描述 :
A Demo of Mandarin/Chinese TTS frontend
高级语言: Python
项目地址: git://github.com/Jackiexiao/MTTS.git
创建时间: 2017-11-22T06:15:47Z
项目社区:https://github.com/Jackiexiao/MTTS

开源协议:MIT License

下载


本项目已停止维护,已相当老旧

推荐:

欢迎加入

  • 语音合成交流QQ群:882726654

Build Status

A Demo of MTTS Mandarin/Chinese Text to Speech FrontEnd

Mandarin/Chinese Text to Speech based on statistical parametric speech
synthesis using merlin toolkit

这只是一个语音合成前端的Demo,没有提供文本正则化,韵律预测功能,文字转拼音使用pypinyin,分词使用结巴分词,这两者的准确度也达不到商用水平。

其他语音合成项目传送门,端到端是不错的方向,自然度要优于merlin。

This is only a demo of mandarin frontend which is lack of some parts like “text normalization” and “prosody prediction”, and the phone set && Question Set this project use havn’t fully tested yet.

一个粗略的文档:A draft documentation written in Mandarin

Data

There is no open-source mandarin speech synthesis dataset on the internet, this
proj used thchs30 dataset to demostrate speech synthesis

UPDATE

open-source mandarin speech synthesis data from data-banker company, 开源的中文语音合成数据,感谢标贝公司

【数据下载】https://weixinxcxdb.oss-cn-beijing.aliyuncs.com/gwYinPinKu/BZNSYP.rar
【数据说明】http://www.data-baker.com/open_source.html

Generated Samples

Listen to https://jackiexiao.github.io/MTTS/

How To Reproduce

  1. First, you need data contain wav and txt (prosody mark is optional)
  2. Second, generate HTS label using this project
  3. Using merlin/egs/mandarin_voice to train and generate Mandarin Voice

Install

Python : python3.6
System: linux(tested on ubuntu16.04)

  1. pip install jieba pypinyin
  2. sudo apt-get install libatlas3-base

Run bash tools/install_mtts.sh
Or download file by yourself

Run Demo

  1. bash run_demo.sh

Usage

1. Generate HTS Label by wav and text

  • Usage: Run python src/mtts.py txtfile wav_directory_path output_directory_path (Absolute path or relative path) Then you will get HTS label, if you have your own acoustic model trained by monthreal-forced-aligner, add-a your_acoustic_model.zip, otherwise, this project use thchs30.zip acoustic model as default
  • Attention: Currently only support Chinese Character, txt should not have any
    Arabia number or English alphabet(不可包含阿拉伯数字和英文字符)

txtfile example

  1. A_01 这是一段文本
  2. A_02 这是第二段文本

wav_directory example(Sampleing Rate should larger than 16khz)

  1. A_01.wav
  2. A_02.wav

2. Generate HTS Label by text with or without alignment file

  • Usage: Run python src/mandarin_frontend.py txtfile output_directory_path
  • or import mandarin_frontend
    ```
    from mandarin_frontend import txt2label

result = txt2label(‘向香港特别行政区同胞澳门和台湾同胞海外侨胞’)
[print(line) for line in result]

with prosody mark and alignment file (sfs file)

result = txt2label(‘向#1香港#2特别#1行政区#1同胞#4澳门#2和#1台湾#1同胞#4海外#1侨胞’,

  1. sfsfile='example_file/example.sfs')

`` see [source code](https://github.com/Jackiexiao/MTTS/blob/master/src/mandarin_frontend.py) for more information, but pay attention to the alignment file(sfs file), the format isendtime phone_typenotstart_time, phone_type`(which is different from speech ocean’s data)

3. Forced-alignment

This project use Montreal-Forced-Aligner to do forced alignment, if you want to get a better alignment, use your data to train a alignment-model, see mfa: algin-using-only-the-dataset

  1. We trained the acoustic model using thchs30 dataset, see misc/thchs30.zip, the dictionary we use mandarin_mtts.lexicon. If you use larger dataset than thchs30, you may get better alignment.
  2. If you want to use mfa’s (montreal-forced-aligner) pre-trained mandarin model, this is the dictionary you need mandarin-for-montreal-forced-aligner-pre-trained-model.lexicon

Prosody Mark

You can generate HTS Label without prosody mark. we assume that word segment is
smaller than prosodic word(which is adjusted in code)

“#0”,”#1”, “#2”,”#3” and “#4” are the prosody labeling symbols.

  • 0 stands for word segment

  • 1 stands for prosodic word

  • 2 stands for stressful word (actually in this project we regrad it as #1)

  • 3 stands for prosodic phrase

  • 4 stands for intonational phrase

Improvement to be done in future

  • Text Normalization
  • Better Chinese word segment
  • G2P: Polyphone Problem
  • Better Label format and Question Set
  • Improvement of prosody analyse
  • Better alignment

Contributor

  • Jackiexiao
  • willian56