注册
登录
idea
>>
Visualisation-and-Outliers-Removal-via-Weka
>>
返回
项目作者:
JiaWu-Repository
项目描述 :
Visualisation and Outliers Removal via Weka
高级语言:
项目主页:
项目地址:
git://github.com/JiaWu-Repository/Visualisation-and-Outliers-Removal-via-Weka.git
创建时间:
2020-07-08T07:47:40Z
项目社区:
https://github.com/JiaWu-Repository/Visualisation-and-Outliers-Removal-via-Weka
开源协议:
下载
Visualisation-and-Outliers-Removal-via-Weka
Ref:
https://www.cs.waikato.ac.nz/ml/weka/courses.html
Using the Visualize panel
Open iris.arff
Bring up Visualize panel
Click one of the plots; examine some instances
Set x axis to petalwidth and y axis to petallength
Click on Class colour to change the colour
Bars on the right change correspond to attributes: click for x axis;
right‐click for y axis
Jitter slider
Show Select Instance: Rectangle option
Submit, Reset, Clear and Save
Exercise -1
Open diabetes data;
Use the Visualize panel to select the outliers based on the feature “
diabetes pedigree function
“.
Exercise -2
Find the InterquartileRange in the Filter;
Read the detailed information;
Apply InterquartileRange and report the outliers;
Apply InterquartileRange and report the outliers only based on the feature “
diabetes pedigree function
“.
Exercise -3
If we only need to output five outliers based on the feature “
diabetes pedigree function
“, how?
For this data, we identify the outliers with the values of the feature “
diabetes pedigree function
“ >= 1.6. How to achieve this goal?