项目作者: YeongHyeon

项目描述 :
TensorFlow implementation of Conditional Generative Adversarial Nets (CGAN) with MNIST dataset.
高级语言: Python
项目地址: git://github.com/YeongHyeon/CGAN-TF.git
创建时间: 2020-11-10T02:33:09Z
项目社区:https://github.com/YeongHyeon/CGAN-TF

开源协议:MIT License

下载


[TensorFlow] Conditional Generative Adversarial Nets (CGAN)

TensorFlow implementation of Conditional Generative Adversarial Nets (CGAN) with MNIST dataset.

Architecture

Training algorithm



The algorithm for training CGAN [1].


CGAN architecture



The architecture of CGAN [1].


Graph in TensorBoard



Graph of CGAN.


Results

Training Procedure






Loss graph in the training procedure.
Each graph shows loss of the discriminator and loss of the generator respectively.


Test Procedure

From random noise without conditions



|z:2|z:64|z:128|
|:—-:|:—-:|:—-:|
||||

From random noise with conditions



|z:2|z:64|z:128|
|:—-:|:—-:|:—-:|
||||

Latent space walking with conditions



|Class-0 (z:2)|Class-1 (z:2)|Class-2 (z:2)|Class-3 (z:2)|Class-4 (z:2)|
|:—-:|:—-:|:—-:|:—-:|:—-:|
||||||

|Class-5 (z:2)|Class-6 (z:2)|Class-7 (z:2)|Class-8 (z:2)|Class-9 (z:2)|
|:—-:|:—-:|:—-:|:—-:|:—-:|
||||||

Environment

  • Python 3.7.4
  • Tensorflow 1.14.0
  • Numpy 1.17.1
  • Matplotlib 3.1.1
  • Scikit Learn (sklearn) 0.21.3

Reference

[1] Mehdi Mirza and Simon Osindero. (2014). Conditional Generative Adversarial Nets. arXiv preprint arXiv:1411.1784.