注册
登录
网络/光纤
>>
DPM
>>
返回
项目作者:
nextBillyonair
项目描述 :
Differentiable Probabilistic Models
高级语言:
Jupyter Notebook
项目主页:
项目地址:
git://github.com/nextBillyonair/DPM.git
创建时间:
2019-06-26T00:12:47Z
项目社区:
https://github.com/nextBillyonair/DPM
开源协议:
MIT License
下载
DPM
Differentiable Probabilistic Models
Table of Contents
Distributions
Transforms
Criterion
Models
Monte Carlo
" class="reference-link">
Distributions
Arcsine
Asymmetric Laplace
Bernoulli
Beta
Binomial
Categorical
Cauchy
ChiSquare
Conditional Model
Uses a Neural Network to take inputs and create the parameters of a distribution.
Sampling -> takes a value, runs the network to create the distribution,
sample from conditional distribution.
Log Prob -> Create distribution conditioned on X, take log_prob w.r.t. Z
Convolution
-Sum of component distributions, only allows sampling
Data Distribution - Randomly sample from a given set of data.
Dirac Delta
Dirichlet
Exponential
Fisher-Snedecor (F-Distribution)
Gamma
Generator
Uses a latent distribution to sample inputs to a neural network to
generate a distribution. Train with the adversarial losses.
Geometric
Gumbel Softmax (Relaxed Categorical)
Gumbel
Half Cauchy
Half Normal
Hyperbolic Secant
Kumaraswamy
Langevin
Adds Langevin Dynamics to sampling methods (see wikipedia)
Laplace
Log Cauchy
Log Laplace
Log Normal
Logistic
Logit Normal
Negative Binomial
Normal (Multivariate)
Normal (Independent)
Pareto
Poisson
Rayleigh
Relaxed Bernoulli
Student T
Transform Distribution
Composes a list of
transforms
on a distribution
Example: Exp(Normal) ~ LogNormal
Uniform
)
Weibull
Mixture Model
Static weights to pick from sub-models using a categorical distribution.
Gumbel Mixture Model
Uses the Gumbel Softmax as a differentiable approximation to the
categorical distribution, allowing mixture weights to be learned.
Infinite Mixture Model
Student T written as a Mixture Model.
" class="reference-link">
Transforms
Affine
Exp
Expm1
Gumbel
Identity
InverseTransform (Inverts a transform)
Kumaraswamy
Log
Logit
NICE
Planar
Power
Radial
Reciprocal
Sigmoid
SinhArcsinh
Softplus
Softsign
Square
Tanh
Weibull
" class="reference-link">
Criterion
Divergences
Cross Entropy
Perplexity
Exponential
Forward KL Divergence
P Model -> Sampling (rsample)
Q Model -> PDF Function (log_prob)
Reverse KL Divergence
P Model -> PDF Function (log_prob)
Q Model -> Sampling + PDF Function
Jensen-Shannon Divergence (JS)
P Model -> PDF + Sampling
Q Model -> PDF + Sampling
Adversarial
GAN Loss
MMGAN Loss
WGAN Loss
LSGAN Loss
Variational
ELBO
Implements SVI with ELBO loss.
Requires a Conditional Model to learn, in addition to P and Q models.
" class="reference-link">
Models
Regression
Linear Regression (Normal)
L1 Regression (Laplace)
Ridge Regression (Normal + Normal Prior on weights) (Bayesian Linear Regression)
Lasso Regression (Normal + Laplace Prior on weights)
Poisson Regression (Poisson)
Negative Binomial Regression (Generalized Poisson)
Classification
Logistic Regression (Bernoulli)
Bayesian Logistic Regression (Bernoulli + Normal Prior on weights)
Softmax Regression (Categorical)
Gaussian Naive Bayes
Bernoulli Naive Bayes
Multinomial Naive Bayes
Linear Discriminant Analysis (Shared Covariance)
Gaussian Discriminant Analysis (Multivariate Normal)
Clustering
Gaussian Mixture Model
Decomposition
Functional PCA
Dynamic SVD Based (can update projection size)
EM PPCA
Variational PPCA
Unconstrained Matrix Factorization
Generative Adversarial Networks
GAN
MMGAN
WGAN
LSGAN
Variational Auto-Encoder (VAE)
Ordinal Models (For Ordinal Targets)
OrdinalLayer (Layer to convert Real Value to Target Prob)
OrdinalModel (Wraps a Predictor + Ordinal in one module)
OrdinalLoss (Reminder to use NLLLoss b/c you don’t want to softmax the probs)
Functional CDFs
exp_cdf -> Exponential Function
erf_cdf -> Error Function as a CDF
tanh_cdf -> Uses Hyperbolic Tangent to fake a CDF
Distribution CDFs
normal_cdf
laplace_cdf
cauchy_cdf
" class="reference-link">
Monte Carlo
Approximations (Integration, Expectation, Variance, etc.)
Inverse Transform Sampling
Rejection Sampling (and Mode Sampling)
Metropolis
Metropolis-Hastings
Simulated Annealing
Metropolis-Adjusted Langevin Algorithm (MALA)
Hamiltonian Monte Carlo (HMC)
presentation_1647609740309.pdf
presentation_1647609740778.pdf
doc_1647609741011.pdf