项目作者: FanChiMao

项目描述 :
Object detection on KITTI dataset
高级语言: Jupyter Notebook
项目地址: git://github.com/FanChiMao/TermProject-2021-ObjectDetection-KITTI.git


TermProject-2021-ObjectDetection-KITTI

1. Dataset Preparation

  • KITTI dataset

    • Training images : 3000
    • Validation images: 81
    • Testing images : 4481
  • Sample numbers of the training data with 8 classes:

    | Classes | Car | Van|Truck|Walker|Sitter|Rider|Tram|Misc.|
    | ——————- |:———:|:—:|:—-:|:——:|:——:|:—-:|:—:|:—-:|
    | Sample number | 11379|1197| 428| 1816| 93| 671| 208| 428|

2. Testing Result:

  • YOLOv3 AP: 32.7%

    • Mean average precision of each class:
      | Classes |Car| Van|Truck|Walker|Sitter|Rider| Tram|Misc.|
      | ————————- |:-:|:—-:|:—-:|:——:|:——:|:—-:|:——:|:—-:|
      | Average Precision |73%|35.9%|56.5%| 31.5%| 0%|30.5%| 33.8%| 0.3%|

    • Performance:

      arch
      arch
      arch

  • YOLOv4 AP: 43.8%

    • Mean average precision of each class:
      | Classes |Car| Van|Truck|Walker|Sitter|Rider| Tram|Misc.|
      | ————————- |:-:|:—-:|:—-:|:——:|:——:|:—-:|:——:|:—-:|
      | Average Precision |63.6%|63%|79%| 26.7%| 19.1%|40.1%| 57.5%| 50.2%|

    • Performance:

      arch
      arch
      arch

  • Scaled YOLOv4 AP: 47.6%

    • Mean average precision of each class:
      | Classes |Car| Van|Truck|Walker|Sitter|Rider| Tram|Misc.|
      | ————————- |:-:|:—-:|:—-:|:——:|:——:|:—-:|:——:|:—-:|
      | Average Precision |65.7%|60.9%|65.3%| 23.5%| 15.0%|60.4%| 62.9%| 59.1%|

    • Performance:

      arch
      arch
      arch

  • SSD (VGG-300, pretrained model) AP: 24%

    • Mean average precision of each class:
      | Classes |Car| Van|Truck|Walker|Sitter|Rider| Tram|Misc.|
      | ————————- |:-:|:—-:|:—-:|:——:|:——:|:—-:|:——:|:—-:|
      | Average Precision |59.6%|39.3%|29.9%| 9.1%| 0%|10.6%| 23.6%| 20.0%|

    • Performance:

      arch
      arch
      arch

  • Faster RCNN (ResNet-101, pretrained model) AP: 63.6%

    • Mean average precision of each class:
      | Classes |Car| Van|Truck|Walker|Sitter|Rider| Tram|Misc.|
      | ————————- |:-:|:—-:|:—-:|:——:|:——:|:—-:|:——:|:—-:|
      | Average Precision |80.0%|78.4%|86.3%| 57.8%| 16.5%|67.3%| 75.7%| 49.1%|

    • Performance:

      arch
      arch
      arch

  • Mask RCNN (ResNet-101, pretrained model) AP: 57.99%

    • Mean average precision of each class:
      | Classes |Vehicle| Person|
      | ————————- |:——-:|:———:|
      | Average Precision | 75.1%| 45.0%|

    • Performance:

      arch
      arch
      arch

3. Summary

  • Performance Table:

    | Method |Total|Vehicle|Person|Run times| Enviroment|
    | ———————— |:—-:|:——-:|:——:|:———-:|:————-:|
    | SSD|24.0%| 38.5%| 6.6%| 0.12s| GTX 1080ti|
    | YOLOv3|32.7%| 39.9%| 20.6%| 0.2s| GTX 1080ti|
    | YOLOv4|43.8%| 62.2%| 28.6%| 0.38s| GTX 1080ti|
    | Scaled VOLOv4|47.6%| 63.7%| 32.9%| 0.34s| GTX 1080ti|
    | Mask R-CNN|58.0%| 75.1%| 45.0%| 3s|TPU (Colab)|
    | Faster R-CNN|63.6%| 73.9%| 47.2%| 7s|GPU (Colab)|

  • Speed (ms) of processing 1 images versus accuracy (AP) on KITTI dataset:

    arch

4. Final Term Project Report

5. Contact me: qaz5517359@gmail.com