项目作者: ppogg

项目描述 :
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~
高级语言: Python
项目地址: git://github.com/ppogg/YOLOv5-Lite.git
创建时间: 2021-08-16T14:24:00Z
项目社区:https://github.com/ppogg/YOLOv5-Lite

开源协议:MIT License

下载


" class="reference-link">YOLOv5-Lite:Lighter, faster and easier to deploy

论文插图

Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, and fewer parameters) and faster (add shuffle channel, yolov5 head for channel reduce. It can infer at least 10+ FPS On the Raspberry Pi 4B when input the frame with 320×320) and is easier to deploy (removing the Focus layer and four slice operations, reducing the model quantization accuracy to an acceptable range).

image

Comparison of ablation experiment results

ID Model Input_size Flops Params Size(M) Map@0.5 Map@.5:0.95
001 yolo-fastest 320×320 0.25G 0.35M 1.4 24.4 -
002 YOLOv5-Liteeours 320×320 0.73G 0.78M 1.7 35.1 -
003 NanoDet-m 320×320 0.72G 0.95M 1.8 - 20.6
004 yolo-fastest-xl 320×320 0.72G 0.92M 3.5 34.3 -
005 YOLOXNano 416×416 1.08G 0.91M 7.3(fp32) - 25.8
006 yolov3-tiny 416×416 6.96G 6.06M 23.0 33.1 16.6
007 yolov4-tiny 416×416 5.62G 8.86M 33.7 40.2 21.7
008 YOLOv5-Litesours 416×416 1.66G 1.64M 3.4 42.0 25.2
009 YOLOv5-Litecours 512×512 5.92G 4.57M 9.2 50.9 32.5
010 NanoDet-EfficientLite2 512×512 7.12G 4.71M 18.3 - 32.6
011 YOLOv5s(6.0) 640×640 16.5G 7.23M 14.0 56.0 37.2
012 YOLOv5-Litegours 640×640 15.6G 5.39M 10.9 57.6 39.1

See the wiki: https://github.com/ppogg/YOLOv5-Lite/wiki/Test-the-map-of-models-about-coco

Comparison on different platforms

Equipment Computing backend System Input Framework v5lite-e v5lite-s v5lite-c v5lite-g YOLOv5s
Inter @i5-10210U window(x86) 640×640 openvino - - 46ms - 131ms
Nvidia @RTX 2080Ti Linux(x86) 640×640 torch - - - 15ms 14ms
Redmi K30 @Snapdragon 730G Android(armv8) 320×320 ncnn 27ms 38ms - - 163ms
Xiaomi 10 @Snapdragon 865 Android(armv8) 320×320 ncnn 10ms 14ms - - 163ms
Raspberrypi 4B @ARM Cortex-A72 Linux(arm64) 320×320 ncnn - 84ms - - 371ms
Raspberrypi 4B @ARM Cortex-A72 Linux(arm64) 320×320 mnn - 71ms - - 356ms
AXera-Pi Cortex A7@CPU
3.6TOPs @NPU
Linux(arm64) 640×640 axpi - - - 22ms 22ms

The tutorial of 15FPS on Raspberry Pi 4B:

https://zhuanlan.zhihu.com/p/672633849

qq交流群:993965802

入群答案:剪枝 or 蒸馏 or 量化 or 低秩分解(任意其一均可)

·Model Zoo·

@v5lite-e:

Model Size Backbone Head Framework Design for
v5Lite-e.pt 1.7m shufflenetv2(Megvii) v5Litee-head Pytorch Arm-cpu
v5Lite-e.bin
v5Lite-e.param
1.7m shufflenetv2 v5Litee-head ncnn Arm-cpu
v5Lite-e-int8.bin
v5Lite-e-int8.param
0.9m shufflenetv2 v5Litee-head ncnn Arm-cpu
v5Lite-e-fp32.mnn 3.0m shufflenetv2 v5Litee-head mnn Arm-cpu
v5Lite-e-fp32.tnnmodel
v5Lite-e-fp32.tnnproto
2.9m shufflenetv2 v5Litee-head tnn arm-cpu
v5Lite-e-320.onnx 3.1m shufflenetv2 v5Litee-head onnxruntime x86-cpu

@v5lite-s:

Model Size Backbone Head Framework Design for
v5Lite-s.pt 3.4m shufflenetv2(Megvii) v5Lites-head Pytorch Arm-cpu
v5Lite-s.bin
v5Lite-s.param
3.3m shufflenetv2 v5Lites-head ncnn Arm-cpu
v5Lite-s-int8.bin
v5Lite-s-int8.param
1.7m shufflenetv2 v5Lites-head ncnn Arm-cpu
v5Lite-s.mnn 3.3m shufflenetv2 v5Lites-head mnn Arm-cpu
v5Lite-s-int4.mnn 987k shufflenetv2 v5Lites-head mnn Arm-cpu
v5Lite-s-fp16.bin
v5Lite-s-fp16.xml
3.4m shufflenetv2 v5Lites-head openvivo x86-cpu
v5Lite-s-fp32.bin
v5Lite-s-fp32.xml
6.8m shufflenetv2 v5Lites-head openvivo x86-cpu
v5Lite-s-fp16.tflite 3.3m shufflenetv2 v5Lites-head tflite arm-cpu
v5Lite-s-fp32.tflite 6.7m shufflenetv2 v5Lites-head tflite arm-cpu
v5Lite-s-int8.tflite 1.8m shufflenetv2 v5Lites-head tflite arm-cpu
v5Lite-s-416.onnx 6.4m shufflenetv2 v5Lites-head onnxruntime x86-cpu

@v5lite-c:

Model Size Backbone Head Framework Design for
v5Lite-c.pt 9m PPLcnet(Baidu) v5s-head Pytorch x86-cpu / x86-vpu
v5Lite-c.bin
v5Lite-c.xml
8.7m PPLcnet v5s-head openvivo x86-cpu / x86-vpu
v5Lite-c-512.onnx 18m PPLcnet v5s-head onnxruntime x86-cpu

@v5lite-g:

Model Size Backbone Head Framework Design for
v5Lite-g.pt 10.9m Repvgg(Tsinghua) v5Liteg-head Pytorch x86-gpu / arm-gpu / arm-npu
v5Lite-g-int8.engine 8.5m Repvgg-yolov5 v5Liteg-head Tensorrt x86-gpu / arm-gpu / arm-npu
v5lite-g-int8.tmfile 8.7m Repvgg-yolov5 v5Liteg-head Tengine arm-npu
v5Lite-g-640.onnx 21m Repvgg-yolov5 yolov5-head onnxruntime x86-cpu
v5Lite-g-640.joint 7.1m Repvgg-yolov5 yolov5-head axpi arm-npu

Baidu Drive Password: pogg

v5lite-s model: TFLite Float32, Float16, INT8, Dynamic range quantization, ONNX, TFJS, TensorRT, OpenVINO IR FP32/FP16, Myriad Inference Engin Blob, CoreML

https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite

Thanks for PINTO0309:https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite

How to use


Install

Python>=3.6.0 is required with all
requirements.txt installed including
PyTorch>=1.7:


bash $ git clone https://github.com/ppogg/YOLOv5-Lite $ cd YOLOv5-Lite $ pip install -r requirements.txt


Inference with detect.py

detect.py runs inference on a variety of sources, downloading models automatically from
the latest YOLOv5-Lite release and saving results to runs/detect.

bash $ python detect.py --source 0 # webcam file.jpg # image file.mp4 # video path/ # directory path/*.jpg # glob 'https://youtu.be/NUsoVlDFqZg' # YouTube 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream


Training

bash $ python train.py --data coco.yaml --cfg v5lite-e.yaml --weights v5lite-e.pt --batch-size 128 v5lite-s.yaml v5lite-s.pt 128 v5lite-c.yaml v5lite-c.pt 96 v5lite-g.yaml v5lite-g.pt 64

If you use multi-gpu. It’s faster several times:

bash $ python -m torch.distributed.launch --nproc_per_node 2 train.py


DataSet

Training set and test set distribution (the path with xx.jpg)

bash train: ../coco/images/train2017/ val: ../coco/images/val2017/
bash ├── images # xx.jpg example │ ├── train2017 │ │ ├── 000001.jpg │ │ ├── 000002.jpg │ │ └── 000003.jpg │ └── val2017 │ ├── 100001.jpg │ ├── 100002.jpg │ └── 100003.jpg └── labels # xx.txt example ├── train2017 │ ├── 000001.txt │ ├── 000002.txt │ └── 000003.txt └── val2017 ├── 100001.txt ├── 100002.txt └── 100003.txt


Auto LabelImg

Link :https://github.com/ppogg/AutoLabelImg

You can use LabelImg based YOLOv5-5.0 and YOLOv5-Lite to AutoAnnotate, biubiubiu 🚀 🚀 🚀





Model Hub

Here, the original components of YOLOv5 and the reproduced components of YOLOv5-Lite are organized and stored in the model hub

modelhub


Heatmap Analysis


bash $ python main.py --type all

论文插图2

Updating …

How to deploy

ncnn for arm-cpu

mnn for arm-cpu

openvino x86-cpu or x86-vpu

tensorrt(C++) for arm-gpu or arm-npu or x86-gpu

tensorrt(Python) for arm-gpu or arm-npu or x86-gpu

Android for arm-cpu

Android_demo

This is a Redmi phone, the processor is Snapdragon 730G, and yolov5-lite is used for detection. The performance is as follows:

link: https://github.com/ppogg/YOLOv5-Lite/tree/master/android_demo/ncnn-android-v5lite

Android_v5Lite-s: https://drive.google.com/file/d/1CtohY68N2B9XYuqFLiTp-Nd2kuFWgAUR/view?usp=sharing

Android_v5Lite-g: https://drive.google.com/file/d/1FnvkWxxP_aZwhi000xjIuhJ_OhqOUJcj/view?usp=sharing

new android app:[link] https://pan.baidu.com/s/1PRhW4fI1jq8VboPyishcIQ [keyword] pogg


More detailed explanation

What is YOLOv5-Lite S/E model:
zhihu link (Chinese): https://zhuanlan.zhihu.com/p/400545131

What is YOLOv5-Lite C model:
zhihu link (Chinese): https://zhuanlan.zhihu.com/p/420737659

What is YOLOv5-Lite G model:
zhihu link (Chinese): https://zhuanlan.zhihu.com/p/410874403

How to deploy on ncnn with fp16 or int8:
csdn link (Chinese): https://blog.csdn.net/weixin_45829462/article/details/119787840

How to deploy on mnn with fp16 or int8:
zhihu link (Chinese): https://zhuanlan.zhihu.com/p/672633849

How to deploy on onnxruntime:
zhihu link (Chinese): https://zhuanlan.zhihu.com/p/476533259(old version)

How to deploy on tensorrt:
zhihu link (Chinese): https://zhuanlan.zhihu.com/p/478630138

How to optimize on tensorrt:
zhihu link (Chinese): https://zhuanlan.zhihu.com/p/463074494

Reference

https://github.com/ultralytics/yolov5

https://github.com/megvii-model/ShuffleNet-Series

https://github.com/Tencent/ncnn

Citing YOLOv5-Lite

If you use YOLOv5-Lite in your research, please cite our work and give a star ⭐:

  1. @misc{yolov5lite2021,
  2. title = {YOLOv5-Lite: Lighter, faster and easier to deploy},
  3. author = {Xiangrong Chen and Ziman Gong},
  4. doi = {10.5281/zenodo.5241425}
  5. year={2021}
  6. }