Image classification done with Mindspore technology
This repo contains our team’s submission to the Huawei Challenge on Hack Cambridge 2021 Hackathon (Problem statement).
To utilize Huawei’s Mindspore package for performing image classification on edge devices,i.e, devices with minimal computation power.
Steps for training the model:
$python train.py
usage: train.py [-h] [-bsize BATCHSIZE] [-repeatNum REPEATNUM] [-dir SAVEDIR]
[-e EPOCH] [-opt OPTIMIZER] [-lr LEARNINGRATE] [-m MOMENTUM]
[-wDecay WEIGHTDECAY]
optional arguments:
-h, --help show this help message and exit
-bsize BATCHSIZE, --batchsize BATCHSIZE
batch size
-repeatNum REPEATNUM, --repeatNum REPEATNUM
repeat num
-dir SAVEDIR, --savedir SAVEDIR
save directory
-e EPOCH, --epoch EPOCH
no of epochs
-opt OPTIMIZER, --optimizer OPTIMIZER
optimizer
-lr LEARNINGRATE, --learningRate LEARNINGRATE
learning rate
-m MOMENTUM, --momentum MOMENTUM
momentum
-wDecay WEIGHTDECAY, --weightDecay WEIGHTDECAY
optimizer
Steps for evaulating the model:
$python eval.py
usage: eval.py [-h] [-loc CHECK_POINT]
optional arguments:
-h, --help show this help message and exit
-loc CHECK_POINT, --check_point CHECK_POINT
Model checkpoint file
Model Architecture | Accuracy |
---|---|
Resnet-18 | 87.86 |