项目作者: rishivar

项目描述 :
Image classification done with Mindspore technology
高级语言: Python
项目地址: git://github.com/rishivar/Resnet-18.git
创建时间: 2021-01-24T08:52:14Z
项目社区:https://github.com/rishivar/Resnet-18

开源协议:

下载


Hack Cambridge 2021

This repo contains our team’s submission to the Huawei Challenge on Hack Cambridge 2021 Hackathon (Problem statement).

Motive

To utilize Huawei’s Mindspore package for performing image classification on edge devices,i.e, devices with minimal computation power.

What we used

  • CIFAR-10 dataset
  • Resnet 18
  • Quantization Aware Training
  • Image preprocessing and parallelism achieved by Mindspore package

Files description

Model Details

  • Resnet-18 architecture model was trained using Quantization-Aware-Training(QAT) method.
  • Adam optimizer and SoftmaxCrossEntropyWithLogits loss function were used.
  • The model was trained for a total of 40 epochs on a NVIDIA-1070 GPU using mindspore-ai backend.

Recreation

Steps for training the model:

  1. $python train.py
  2. usage: train.py [-h] [-bsize BATCHSIZE] [-repeatNum REPEATNUM] [-dir SAVEDIR]
  3. [-e EPOCH] [-opt OPTIMIZER] [-lr LEARNINGRATE] [-m MOMENTUM]
  4. [-wDecay WEIGHTDECAY]
  5. optional arguments:
  6. -h, --help show this help message and exit
  7. -bsize BATCHSIZE, --batchsize BATCHSIZE
  8. batch size
  9. -repeatNum REPEATNUM, --repeatNum REPEATNUM
  10. repeat num
  11. -dir SAVEDIR, --savedir SAVEDIR
  12. save directory
  13. -e EPOCH, --epoch EPOCH
  14. no of epochs
  15. -opt OPTIMIZER, --optimizer OPTIMIZER
  16. optimizer
  17. -lr LEARNINGRATE, --learningRate LEARNINGRATE
  18. learning rate
  19. -m MOMENTUM, --momentum MOMENTUM
  20. momentum
  21. -wDecay WEIGHTDECAY, --weightDecay WEIGHTDECAY
  22. optimizer

Steps for evaulating the model:

  1. $python eval.py
  2. usage: eval.py [-h] [-loc CHECK_POINT]
  3. optional arguments:
  4. -h, --help show this help message and exit
  5. -loc CHECK_POINT, --check_point CHECK_POINT
  6. Model checkpoint file

Results

Model Architecture Accuracy
Resnet-18 87.86

Contributions

  • Submitted a pull request to Mindspore on implemented Resnet-18 Architecture

Future Scope

  • Implementing Adversarial Training to make the model more robust to real-time data.