项目作者: joe-lynch

项目描述 :
Numerical optimisation methods including the cauchy point, dogleg point, line search and steepest descent.
高级语言: MATLAB
项目地址: git://github.com/joe-lynch/numerical-optimisation.git
创建时间: 2020-09-29T14:44:23Z
项目社区:https://github.com/joe-lynch/numerical-optimisation

开源协议:

下载


File Descriptions

dogleg.m

To run this function call dogleg(xn, fx, gx, H, H_, delta)\
[although is called as part of tr_dogleg]

where

  • xn : initial point
  • fx : actual function
  • gx : gradient function
  • H : Hessian matrix
  • H_ : inverse Hessian matrix
  • delta : radius of the trust region

sr1.m

To run this function call sr1(H, H_, d, y, eta)\
[although is called as part of tr_dogleg]

where

  • H : Hessian matrix
  • H_ : inverse Hessian matrix
  • d : step between two points
  • y : difference between gradient values
  • eta : small value greater than zero

tr_dogleg.m

To run this function call trdogleg(f, df, H, H, xn, delta, delmax, rho_ac, tol)

where

  • f : actual function
  • df : gradient function
  • H : Hessian matrix
  • H_ : inverse Hessian matrix
  • xn : initial point
  • delta : radius of the trust region
  • delmax : maximum radius of the trust region
  • rho_ac : accuracy
  • tol : tolerance

Note that eta, is defined as 10^(-6) in the file tr_dogleg.m