Calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Calculate the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array using Welford’s algorithm.
math
\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i
bash
npm install @stdlib/stats-base-dmeanwd
script
tag without installation and bundlers, use the [ES Module][es-module] available on the [esm
][esm-url] branch (see [README][esm-readme]).deno
][deno-url] branch (see [README][deno-readme] for usage intructions).umd
][umd-url] branch (see [README][umd-readme]).javascript
var dmeanwd = require( '@stdlib/stats-base-dmeanwd' );
x
using Welford’s algorithm.javascript
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var v = dmeanwd( x.length, x, 1 );
// returns ~0.3333
Float64Array
][@stdlib/array/float64].x
.N
and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in x
,javascript
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var v = dmeanwd( 4, x, 2 );
// returns 1.25
typed array
][mdn-typed-array] views.javascript
var Float64Array = require( '@stdlib/array-float64' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = dmeanwd( 4, x1, 2 );
// returns 1.25
javascript
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var v = dmeanwd.ndarray( x.length, x, 1, 0 );
// returns ~0.33333
x
.typed array
][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other element in x
starting from the second elementjavascript
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var v = dmeanwd.ndarray( 4, x, 2, 1 );
// returns 1.25
N <= 0
, both functions return NaN
.javascript
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var dmeanwd = require( '@stdlib/stats-base-dmeanwd' );
var x = discreteUniform( 10, -50, 50, {
'dtype': 'float64'
});
console.log( x );
var v = dmeanwd( x.length, x, 1 );
console.log( v );
c
#include "stdlib/stats/base/dmeanwd.h"
c
const double x[] = { 1.0, -2.0, 2.0 };
double v = stdlib_strided_dmeanwd( 3, x, 1 );
// returns ~0.333
[in] CBLAS_INT
number of indexed elements.[in] double*
input array.[in] CBLAS_INT
stride length for X
.c
double stdlib_strided_dmeanwd( const CBLAS_INT N, const double *X, const CBLAS_INT strideX );
c
const double x[] = { 1.0, -2.0, 2.0 };
double v = stdlib_strided_dmeanwd_ndarray( 3, x, 1, 0 );
// returns ~0.333
[in] CBLAS_INT
number of indexed elements.[in] double*
input array.[in] CBLAS_INT
stride length for X
.[in] CBLAS_INT
starting index for X
.c
double stdlib_strided_dmeanwd_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
c
#include "stdlib/stats/base/dmeanwd.h"
#include <stdint.h>
#include <stdio.h>
int main( void ) {
// Create a strided array:
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
// Specify the number of elements:
const int N = 4;
// Specify the stride length:
const int strideX = 2;
// Compute the minimum value:
double v = stdlib_strided_dmeanwd( N, x, strideX );
// Print the result:
printf( "mean: %lf\n", v );
}