项目作者: stdlib-js

项目描述 :
Calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.
高级语言: JavaScript
项目地址: git://github.com/stdlib-js/stats-base-dmeanwd.git
创建时间: 2021-06-14T13:20:16Z
项目社区:https://github.com/stdlib-js/stats-base-dmeanwd

开源协议:Apache License 2.0

下载




About stdlib…

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.


The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.


When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.


To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!


dmeanwd

[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]

Calculate the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array using Welford’s algorithm.



The [arithmetic mean][arithmetic-mean] is defined as



math \mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i







## Installation

bash npm install @stdlib/stats-base-dmeanwd

Alternatively,

- To load the package in a website via a script tag without installation and bundlers, use the [ES Module][es-module] available on the [esm][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [deno][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [umd][umd-url] branch (see [README][umd-readme]).

The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.



## Usage

javascript var dmeanwd = require( '@stdlib/stats-base-dmeanwd' );

#### dmeanwd( N, x, strideX )

Computes the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array x using Welford’s algorithm.

javascript var Float64Array = require( '@stdlib/array-float64' ); var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); var v = dmeanwd( x.length, x, 1 ); // returns ~0.3333

The function has the following parameters:

- N: number of indexed elements.
- x: input [Float64Array][@stdlib/array/float64].
- strideX: stride length for x.

The N and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in x,

javascript var Float64Array = require( '@stdlib/array-float64' ); var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] ); var v = dmeanwd( 4, x, 2 ); // returns 1.25

Note that indexing is relative to the first index. To introduce an offset, use [typed array][mdn-typed-array] views.



javascript var Float64Array = require( '@stdlib/array-float64' ); var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var v = dmeanwd( 4, x1, 2 ); // returns 1.25

#### dmeanwd.ndarray( N, x, strideX, offsetX )

Computes the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array using Welford’s algorithm and alternative indexing semantics.

javascript var Float64Array = require( '@stdlib/array-float64' ); var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); var v = dmeanwd.ndarray( x.length, x, 1, 0 ); // returns ~0.33333

The function has the following additional parameters:

- offsetX: starting index for x.

While [typed array][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other element in x starting from the second element

javascript var Float64Array = require( '@stdlib/array-float64' ); var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); var v = dmeanwd.ndarray( 4, x, 2, 1 ); // returns 1.25



## Notes

- If N <= 0, both functions return NaN.



## Examples



javascript var discreteUniform = require( '@stdlib/random-array-discrete-uniform' ); var dmeanwd = require( '@stdlib/stats-base-dmeanwd' ); var x = discreteUniform( 10, -50, 50, { 'dtype': 'float64' }); console.log( x ); var v = dmeanwd( x.length, x, 1 ); console.log( v );




## C APIs







### Usage

c #include "stdlib/stats/base/dmeanwd.h"

#### stdlib_strided_dmeanwd( N, *X, strideX )

Computes the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array using Welford’s algorithm.

c const double x[] = { 1.0, -2.0, 2.0 }; double v = stdlib_strided_dmeanwd( 3, x, 1 ); // returns ~0.333

The function accepts the following arguments:

- N: [in] CBLAS_INT number of indexed elements.
- X: [in] double* input array.
- strideX: [in] CBLAS_INT stride length for X.

c double stdlib_strided_dmeanwd( const CBLAS_INT N, const double *X, const CBLAS_INT strideX );

#### stdlib_strided_dmeanwd_ndarray( N, *X, strideX, offsetX )

Computes the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array using Welford’s algorithm and alternative indexing semantics.

c const double x[] = { 1.0, -2.0, 2.0 }; double v = stdlib_strided_dmeanwd_ndarray( 3, x, 1, 0 ); // returns ~0.333

The function accepts the following arguments:

- N: [in] CBLAS_INT number of indexed elements.
- X: [in] double* input array.
- strideX: [in] CBLAS_INT stride length for X.
- offsetX: [in] CBLAS_INT starting index for X.

c double stdlib_strided_dmeanwd_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );





### Examples

c #include "stdlib/stats/base/dmeanwd.h" #include <stdint.h> #include <stdio.h> int main( void ) { // Create a strided array: const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 }; // Specify the number of elements: const int N = 4; // Specify the stride length: const int strideX = 2; // Compute the minimum value: double v = stdlib_strided_dmeanwd( N, x, strideX ); // Print the result: printf( "mean: %lf\n", v ); }




## References

- Welford, B. P. 1962. “Note on a Method for Calculating Corrected Sums of Squares and Products.” Technometrics 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022][@welford:1962a].
- van Reeken, A. J. 1968. “Letters to the Editor: Dealing with Neely’s Algorithms.” Communications of the ACM 11 (3): 149–50. doi:[10.1145/362929.362961][@vanreeken:1968a].



*

## Notice

This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].

#### Community

[![Chat][chat-image]][chat-url]

—-

## License

See [LICENSE][stdlib-license].


## Copyright

Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].