项目作者: nla-group

项目描述 :
A symbolic time series representation building Brownian bridges
高级语言: Python
项目地址: git://github.com/nla-group/ABBA.git
创建时间: 2019-05-26T10:25:06Z
项目社区:https://github.com/nla-group/ABBA

开源协议:MIT License

下载


Build Status
codecov
License: MIT

ABBA

This repository provides ABBA, an algorithm for the adaptive symbolic
aggregation of time series. The ABBA algorithm consists of two
key parts: compression via an adaptive piecewise linear approximation, and
digitization via mean-based clustering on the increments and lengths of each
piece.

The algorithm uses a scaling parameter scl to control the weighting of
the increments and lengths during the clustering.
If scl = 0 or scl = np.inf, a one-dimensional clustering algorithm can be
used. We use a modified C++ implementation of CKmeans from Ckmeans.1d.dp R
package; see Prerequisites. If the C++ implementation is not available or a
different scaling parameter is used, then ABBA uses the Kmeans algorithm
from the Python package Scikit-learn.

As an example, we consider a synthetic time series and apply ABBA’s compression
method, which approximates the time series by a sequence of linear segments
stitched together. Each segment can be represented by its change in the
x-value (len) and change in y-direction (inc).

Compression

ABBA’s digitization procedure clusters the tuples (len, inc),
assigning a unique symbol to each cluster.

Digitization

The symbolic representation of the time series is ‘abbacab’. For further
information on ABBA, see [1].

Prerequisites

Install python packages:

  1. pip install -r requirements.txt

If scl = 0 or scl = np.inf, then ABBA will attempt to use a C++ implementation
of the CKmeans algorithm. For this we use SWIG, an open source Simplified
Wrapper and Interface Generator. SWIG generated a shared library and
corresponding python file which provides a wrapper for the C++ function. SWIG
can be installed via the following commands:

Linux (Ubuntu):

  1. sudo apt-get install swig

Mac:

  1. brew install swig

Once installed, the Python wrapper can be constructed using the makefile.

  1. make

Testing

Run the unit tests by the following command:

  1. python test_ABBA.py -v

Example

  1. >>> from ABBA import ABBA
  2. >>> ts = [-1, 0.1, 1.3, 2, 1.9, 2.4, 1.8, 0.8, -0.5]
  3. >>> abba = ABBA()
  4. >>> string, centers = abba.transform(ts)
  5. Compression rate: 77.77777777777779
  6. Digitization: Using 4 symbols
  7. >>> reconstructed_ts = abba.inverse_transform(string, centers, ts[0])
  8. >>> print([round(i, 1) for i in reconstructed_ts])
  9. [-1, 0.1, 1.3, 1.9, 1.5, 2.1, 1.8, 0.6, -0.5]

TODO

  • Make patches produce reconstruction that is the same length as original time series.
  • Isolate clustering from digitization. This will allow us to convert time series using already constructed ABBA representation.

License

This project is licensed under the MIT License - see the LICENSE.md
file for details

Acknowledgments

References

[1] S. Elsworth and S. Güttel. ABBA: Adaptive Brownian bridge-based symbolic
aggregation of time series, MIMS Eprint 2019.11 (http://eprints.maths.manchester.ac.uk/2712),
Manchester Institute for Mathematical Sciences, The University of Manchester, UK, 2019.

UWaveGestureLibraryAll_TRAIN_1647614455039.pdf
UWaveGestureLibraryX_TEST_1647614455061.pdf
UWaveGestureLibraryX_TRAIN_1647614455067.pdf
UWaveGestureLibraryY_TEST_1647614455073.pdf
UWaveGestureLibraryY_TRAIN_1647614455079.pdf
UWaveGestureLibraryZ_TEST_1647614455110.pdf
UWaveGestureLibraryZ_TRAIN_1647614455130.pdf
Wafer_TEST_1647614455166.pdf
Wafer_TRAIN_1647614455228.pdf
Wine_TEST_1647614455244.pdf
Wine_TRAIN_1647614455250.pdf
WordSynonyms_TEST_1647614455302.pdf
WordSynonyms_TRAIN_1647614455396.pdf
WormsTwoClass_TEST_1647614455454.pdf
WormsTwoClass_TRAIN_1647614455498.pdf
Worms_TEST_1647614455513.pdf
Worms_TRAIN_1647614455537.pdf
Yoga_TEST_1647614455588.pdf
Yoga_TRAIN_1647614455619.pdf
2_1647614455670.pdf
2_diff_1647614455715.pdf
DTW_1647614455765.pdf
DTW_diff_1647614455779.pdf
ToeSegmentation1_TRAIN_1647614447256.pdf
ToeSegmentation2_TEST_1647614447291.pdf
ToeSegmentation2_TRAIN_1647614447298.pdf
Trace_TEST_1647614447332.pdf
Trace_TRAIN_1647614447388.pdf
TwoPatterns_TEST_1647614447429.pdf
TwoPatterns_TRAIN_1647614447468.pdf
UMD_TEST_1647614447493.pdf
UMD_TRAIN_1647614447523.pdf
UWaveGestureLibraryAll_TEST_1647614447539.pdf
UWaveGestureLibraryAll_TRAIN_1647614447593.pdf
UWaveGestureLibraryX_TEST_1647614447618.pdf
UWaveGestureLibraryX_TRAIN_1647614447649.pdf
UWaveGestureLibraryY_TEST_1647614447672.pdf
UWaveGestureLibraryY_TRAIN_1647614447723.pdf
UWaveGestureLibraryZ_TEST_1647614447751.pdf
UWaveGestureLibraryZ_TRAIN_1647614447790.pdf
Wafer_TEST_1647614447810.pdf
Wafer_TRAIN_1647614447824.pdf
Wine_TEST_1647614447848.pdf
Wine_TRAIN_1647614447881.pdf
WordSynonyms_TEST_1647614447908.pdf
WordSynonyms_TRAIN_1647614447924.pdf
WormsTwoClass_TEST_1647614447951.pdf
WormsTwoClass_TRAIN_1647614447980.pdf
Worms_TEST_1647614448003.pdf
Worms_TRAIN_1647614448036.pdf
Yoga_TEST_1647614448049.pdf
Yoga_TRAIN_1647614448095.pdf
2_1647614448103.pdf
2_diff_1647614448140.pdf
DTW_1647614448146.pdf
DTW_diff_1647614448152.pdf
Adiac_TEST_1647614448543.pdf
Adiac_TRAIN_1647614448548.pdf
AllGestureWiimoteX_TEST_1647614448553.pdf
AllGestureWiimoteX_TRAIN_1647614448595.pdf
AllGestureWiimoteY_TEST_1647614448643.pdf
AllGestureWiimoteY_TRAIN_1647614448649.pdf
AllGestureWiimoteZ_TEST_1647614448673.pdf
AllGestureWiimoteZ_TRAIN_1647614448704.pdf
ArrowHead_TEST_1647614448769.pdf
ArrowHead_TRAIN_1647614448813.pdf
BME_TEST_1647614449030.pdf
BME_TRAIN_1647614449065.pdf
Beef_TEST_1647614449088.pdf
Beef_TRAIN_1647614449094.pdf
BeetleFly_TEST_1647614449112.pdf
BeetleFly_TRAIN_1647614449130.pdf
BirdChicken_TEST_1647614449137.pdf
BirdChicken_TRAIN_1647614449158.pdf
CBF_TEST_1647614449202.pdf
CBF_TRAIN_1647614449226.pdf
Car_TEST_1647614449292.pdf
Car_TRAIN_1647614449316.pdf
ChlorineConcentration_TEST_1647614449360.pdf
ChlorineConcentration_TRAIN_1647614449378.pdf
CinCECGTorso_TEST_1647614449408.pdf
CinCECGTorso_TRAIN_1647614449435.pdf
Coffee_TEST_1647614449460.pdf
Coffee_TRAIN_1647614449482.pdf
Computers_TEST_1647614449492.pdf
Computers_TRAIN_1647614449515.pdf
CricketX_TEST_1647614449520.pdf
CricketX_TRAIN_1647614449556.pdf
CricketY_TEST_1647614449583.pdf
CricketY_TRAIN_1647614449617.pdf
CricketZ_TEST_1647614449637.pdf
CricketZ_TRAIN_1647614449679.pdf
DiatomSizeReduction_TEST_1647614449713.pdf
DiatomSizeReduction_TRAIN_1647614449746.pdf
DodgerLoopDay_TEST_1647614449783.pdf
DodgerLoopDay_TRAIN_1647614449820.pdf
DodgerLoopGame_TEST_1647614449845.pdf
DodgerLoopGame_TRAIN_1647614449851.pdf
DodgerLoopWeekend_TEST_1647614449876.pdf
DodgerLoopWeekend_TRAIN_1647614449882.pdf