项目作者: gmishne

项目描述 :
Diffusion Net TensorFlow implementation
高级语言: Jupyter Notebook
项目地址: git://github.com/gmishne/DiffusionNet.git
创建时间: 2017-10-23T19:06:09Z
项目社区:https://github.com/gmishne/DiffusionNet

开源协议:GNU General Public License v3.0

下载


DiffusionNet - a geometric autoencoder

Tensorflow implementation of

Diffusion Nets,
G. Mishne, U. Shaham, A. Cloninger and I. Cohen,
Applied and Computational Harmonic Analysis, Aug. 2017.

decoder

Files:

  • diffusion_net_pretrain.ipynb - jupyter notebook demo of using DiffusionNet for 3D curve
  • diffusion_net_pretrain-layer1.py - python script for Diffusion Net with 1 hidden layer architecture, evaluting various values of the cost parameters
  • diffusion_net_pretrain-layer2.py - python script for Diffusion Net with 2 hidden layers architecture, evaluting various values of the cost parameters
  • anomaly.ipynb - jupyter notebook demo of using DiffusionNet for anomaly detection in images
  • Diffusion.py - python implementation of diffusion maps
  • autoencoder.py - tensorflow implementation of sparse autoencoders for pre-training

Output of diffusion_net_pretrain-layer2.py

  1. Initial encoder loss 1.05e+00
  2. eta=0
  3. Final encoder loss 2.85e-02
  4. Full autoencoder denoising loss 6.15e-02
  5. eta=1
  6. Final encoder loss 2.49e-02
  7. Full autoencoder denoising loss 5.75e-02
  8. eta=10
  9. Final encoder loss 1.95e-02
  10. Full autoencoder denoising loss 5.11e-02
  11. eta=100
  12. Final encoder loss 1.57e-02
  13. Full autoencoder denoising loss 5.08e-02
  14. eta=1000
  15. Final encoder loss 3.89e-02
  16. Full autoencoder denoising loss 6.52e-02
  17. eta=100000.0
  18. Final encoder loss 1.37e+00
  19. Full autoencoder denoising loss 1.22e+00

encoder2
autoencoder2


Output of diffusion_net_pretrain-layer1.py

  1. Initial encoder loss 1.07e+00
  2. eta=0
  3. Final encoder loss 4.34e-02
  4. Full autoencoder denoising loss 8.01e-02
  5. eta=1
  6. Final encoder loss 4.20e-02
  7. Full autoencoder denoising loss 7.78e-02
  8. eta=10
  9. Final encoder loss 3.53e-02
  10. Full autoencoder denoising loss 7.07e-02
  11. eta=100
  12. Final encoder loss 3.96e-02
  13. Full autoencoder denoising loss 7.22e-02
  14. eta=1000
  15. Final encoder loss 9.59e-02
  16. Full autoencoder denoising loss 1.33e-01
  17. eta=100000
  18. Final encoder loss 1.40e+00
  19. Full autoencoder denoising loss 1.21e+00

encoder1
autoencoder1