项目作者: Data-Science-FMI

项目描述 :
iPython notebooks & slides for "Stochastic algorithms for Machine Learning" class in FMI Plovdiv (2019)
高级语言:
项目地址: git://github.com/Data-Science-FMI/ml-from-scratch-2019.git
创建时间: 2018-10-04T09:36:53Z
项目社区:https://github.com/Data-Science-FMI/ml-from-scratch-2019

开源协议:MIT License

下载


ml-from-scratch-2019

Labs

Slides

Resources

Exam

Lowest error solution

Challenge

Requirements for entering the exam

  • Implementation (from scratch) of a Random Forest model
  • Train your model on the training data, predict on the test data and upload the result to Kaggle

Decision tree source code

Our implementation of a Decision tree model can be found here - Decision Tree source code. You can use it to build your Random Forest.

The notebook contains example code for generating your submission.csv file that you must upload for Kaggle to score it.

Resources

Teams

  • B.H., L.M.
  • A.R., L.V.
  • G.M., G.F., S.O.
  • L.P. M.P.
  • Кьополу - L.B., E.K.
  • Д.А., Т.М.
  • Мусака - Т.Н., З.К.
  • А. К., М. М., Д.И.
  • Д.М., А.П., В.К.
  • Е.Д., Д.Д.
  • Г.П., Й. И.