百度uid-generator的springboot版本
==========================
本组件是 百度UID 的一个派生版本,改造为基于spring boot 的版本.使用jdbc连接数据库,不依赖其他ORM框架
DROP TABLE IF EXISTS WORKER_NODE;
CREATE TABLE WORKER_NODE
(
ID BIGINT NOT NULL AUTO_INCREMENT COMMENT 'auto increment id',
HOST_NAME VARCHAR(64) NOT NULL COMMENT 'host name',
PORT VARCHAR(64) NOT NULL COMMENT 'port',
TYPE INT NOT NULL COMMENT 'node type: ACTUAL or CONTAINER',
LAUNCH_DATE DATE NOT NULL COMMENT 'launch date',
MODIFIED TIMESTAMP NOT NULL COMMENT 'modified time',
CREATED TIMESTAMP NOT NULL COMMENT 'created time',
PRIMARY KEY(ID)
)
COMMENT='DB WorkerID Assigner for UID Generator',ENGINE = INNODB;
<dependency>
<groupId>com.github.wwytake</groupId>
<artifactId>uid-springboot</artifactId>
<version>2.0.2-release</version>
</dependency>
wwytake:
uid:
timeBits: 29
workerBits: 21
seqBits: 13
epochStr: "2018-11-26"
type: "cache"
CachedUidGenerator: # 无此项,默认DefaultUidGenerator
boost-power: 3 # RingBuffer size扩容参数, 可提高UID生成的吞吐量, 默认:3
padding-factor: 50 # 指定何时向RingBuffer中填充UID, 取值为百分比(0, 100), 默认为50
#schedule-interval: 60 # 默认:不配置此项, 即不实用Schedule线程. 如需使用, 请指定Schedule线程时间间隔, 单位:秒
public class DefaultRunTest {
@Autowired
private UidGenerator defaultUidGenerator;
@Test
public void mybaitsTest(){
Set<Long> hashSet = new HashSet<>();
for (int i = 0; i < 1000; i++) {
Long uid = defaultUidGenerator.getUID();
Assert.assertNotNull(uid);
Assert.assertFalse(hashSet.contains(uid));
hashSet.add(uid);
}
}
}
UidGenerator是Java实现的,基于Snowflake算法的唯一ID生成器。UidGenerator以组件形式工作在应用项目中,
支持自定义workerId位数和初始化策略, 从而适用于docker等虚拟化环境下实例自动重启、漂移等场景。
在实现上, UidGenerator通过借用未来时间来解决sequence天然存在的并发限制; 采用RingBuffer来缓存已生成的UID, 并行化UID的生产和消费,同时对CacheLine补齐,避免了由RingBuffer带来的硬件级「伪共享」问题. 最终单机QPS可达600万。
依赖版本:Java8及以上版本,MySQL(内置WorkerID分配器, 启动阶段通过DB进行分配; 如自定义实现, 则DB非必选依赖)。
Snowflake算法描述:指定机器 & 同一时刻 & 某一并发序列,是唯一的。据此可生成一个64 bits的唯一ID(long)。默认采用上图字节分配方式:
sign(1bit)
固定1bit符号标识,即生成的UID为正数。
delta seconds (28 bits)
当前时间,相对于时间基点”2016-05-20”的增量值,单位:秒,最多可支持约8.7年
worker id (22 bits)
机器id,最多可支持约420w次机器启动。内置实现为在启动时由数据库分配,默认分配策略为用后即弃,后续可提供复用策略。
sequence (13 bits)
每秒下的并发序列,13 bits可支持每秒8192个并发。
UidGenerator在应用中是以 Spring 组件的形式提供服务。
DefaultUidGenerator
提供了最简单的Snowflake式的生成模式,但是并没有使用任何缓存来预存UID,在需要生成ID的时候即时进行计算。CachedUidGenerator
是一个使用RingBuffer预先缓存UID的生成器,在初始化时就会填充整个RingBuffer,并在take()时检测到少于指定的填充阈值之后就会异步地再次填充RingBuffer(默认值为50%),另外可以启动一个定时器周期性检测阈值并及时进行填充。RingBuffer环形数组,数组每个元素成为一个slot。RingBuffer容量,默认为Snowflake算法中sequence最大值,且为2^N。可通过boostPower
配置进行扩容,以提高RingBuffer读写吞吐量。
Tail指针、Cursor指针用于环形数组上读写slot:
Tail指针
表示Producer生产的最大序号(此序号从0开始,持续递增)。Tail不能超过Cursor,即生产者不能覆盖未消费的slot。当Tail已赶上curosr,此时可通过rejectedPutBufferHandler
指定PutRejectPolicy。
Cursor指针
表示Consumer消费到的最小序号(序号序列与Producer序列相同)。Cursor不能超过Tail,即不能消费未生产的slot。当Cursor已赶上tail,此时可通过rejectedTakeBufferHandler
指定TakeRejectPolicy。
CachedUidGenerator采用了双RingBuffer,Uid-RingBuffer用于存储Uid、Flag-RingBuffer用于存储Uid状态(是否可填充、是否可消费)。由于数组元素在内存中是连续分配的,可最大程度利用CPU cache以提升性能。但同时会带来「伪共享」FalseSharing问题,为此在Tail、Cursor指针、Flag-RingBuffer中采用了CacheLine补齐方式。
初始化预填充
RingBuffer初始化时,预先填充满整个RingBuffer。
即时填充
Take消费时,即时检查剩余可用slot量(tail
- cursor
),如小于设定阈值,则补全空闲slots。阈值可通过paddingFactor
来进行配置,请参考Quick Start中CachedUidGenerator配置。
周期填充(默认不启用)
通过Schedule线程,定时补全空闲slots。可通过scheduleInterval
配置,以应用定时填充功能,并指定Schedule时间间隔。
对于并发数要求不高、期望长期使用的应用,可增加timeBits
位数, 减少seqBits
位数。例如节点采取用完即弃的 WorkerIdAssigner 策略,重启频率为12次/天,那么配置成 {"workerBits":23,"timeBits":31,"seqBits":9}
时,可支持28个节点以整体并发量14400 UID/s的速度持续运行68年。
对于节点重启频率频繁、期望长期使用的应用, 可增加workerBits
和timeBits
位数, 减少seqBits
位数. 例如节点采取用完即弃的WorkerIdAssigner策略, 重启频率为24*12次/天,那么配置成{"workerBits":27,"timeBits":30,"seqBits":6}
时,可支持37个节点以整体并发量2400 UID/s的速度持续运行34年。
在MacBook Pro(2.7GHz Intel Core i5, 8G DDR3)上进行了CachedUidGenerator(单实例)的UID吞吐量测试。
首先固定住workerBits为任选一个值(如20),分别统计timeBits变化时(如从25至32,总时长分别对应1年和136年)的吞吐量,如下表所示:
timeBits | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
---|---|---|---|---|---|---|---|---|
throughput | 6,831,465 | 7,007,279 | 6,679,625 | 6,499,205 | 6,534,971 | 7,617,440 | 6,186,930 | 6,364,997 |
再固定住timeBits为任选一个值(如31),分别统计workerBits变化时(如从20至29,总重启次数分别对应1百万和500百万)的吞吐量,如下表所示:
workerBits | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
---|---|---|---|---|---|---|---|---|---|---|
throughput | 6,186,930 | 6,642,727 | 6,581,661 | 6,462,726 | 6,774,609 | 6,414,906 | 6,806,266 | 6,223,617 | 6,438,055 | 6,435,549 |
由此可见, 不管如何配置, CachedUidGenerator总能提供600万/s的稳定吞吐量, 只是使用年限会有所减少。这真的是太棒了。
最后, 固定住workerBits和timeBits位数(如23和31), 分别统计不同数目(如1至8,本机CPU核数为4)的UID使用者情况下的吞吐量,
workerBits | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
throughput | 6,462,726 | 6,542,259 | 6,077,717 | 6,377,958 | 7,002,410 | 6,599,113 | 7,360,934 | 6,490,969 |