项目作者: JetBrains-Research

项目描述 :
Single cell ATAC-Seq preprocessing for single cell explorer
高级语言: Jupyter Notebook
项目地址: git://github.com/JetBrains-Research/sc-atacseq-explorer.git
创建时间: 2019-04-13T19:03:34Z
项目社区:https://github.com/JetBrains-Research/sc-atacseq-explorer

开源协议:

下载


JetBrains Research

sc-atacseq-explorer

This single cell ATAC-Seq analysis pipeline is designed for advanced analysis of dataset,
produced by 10X Genomics Cell Ranger ATAC.
Aggregated datasets are also supported!

In addition to 10x Genomics results it offers:

  • Capable to process aggregated data by 10X Genomics Cell Ranger ATAC.
  • Summary on different conditions in case of aggregated dataset
  • Flexible data processing with t-SNE/UMAP visualizations in low dimensions space
  • User defined markers visualization as a heatmap
  • Closest genes annotations for peaks and clusters
  • Annotated markers analysis
  • Bigwig and BED files for clusters and markers ready-to-be-visualized in JBR Genome Browser
  • Data preparation for Single Cell Explorer
  • Save all the figures to ready for publication PDF format

10x Genomic Cell Ranger ATAC

  • Launch batch cell ranger processing.\
    NOTE: we don’t launch it in parallel because of martian framework used by Cell Ranger ATAC.
  1. for SAMPLE in $(ls *.fastq.gz | sed -E 's/_S[0-9]_L00.*//g' | sort --unique); do
  2. cellranger-atac count --id=cra_${SAMPLE} --fastqs=${WORK_DIR} --sample ${SAMPLE} --reference ${REFERENCE}
  3. done
  • Create aggregation file merged.csv
  1. library_id,fragments,cells
  2. <id1>,<path1>/outs/fragments.tsv.gz,<path1>/outs/singlecell.csv
  3. ...
  4. <idN>,<pathN>/outs/fragments.tsv.gz,<pathN>/outs/singlecell.csv
  • Launch aggregation
  1. cellranger-atac aggr --id=<id> --csv merged.csv --normalize=depth --reference=${REFERENCE}

Prerequisites

Conda environment sc-atac-explorer can be easily created for launching Jupyter Notebook:

  1. ```
  2. conda env create -f environment.yml
  3. conda activate sc-atac-explorer
  4. ```

Pipeline

Launch jupyter notebook to proceed with the pipeline.

  1. ```
  2. conda activate sc-atac-explorer
  3. jupyter notebook
  4. ```

Other pipelines

References