Must-read papers and resources related to causal inference and machine (deep) learning
Contributions are welcome. Inspired by GNNpapers.
Causal Machine Learning: A Survey and Open Problems, 2022. paper
Jean Kaddour, Aengus Lynch, Qi Liu, Matt J. Kusner, Ricardo Silva.
A Unified Survey of Heterogeneous Treatment Effect Estimation and Uplift Modeling, ACM Computing Surveys, 2022. paper
Weijia Zhang, Jiuyong Li, Lin Liu.
Toward Causal Representation Learning, IEEE, 2021. paper
Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, Yoshua Bengio.
A Survey of Learning Causality with Data: Problems and Methods, ACM, 2020. paper
Ruocheng Guo, Lu Cheng, Jundong Li, P. Richard Hahn, Huan Liu.
Machine learning and causal inference for policy evaluation, KDD, 2015. paper
Susan Athey.
Can Transformers be Strong Treatment Effect Estimators?, arxiv, 2022. paper code
Yi-Fan Zhang, Hanlin Zhang, Zachary C. Lipton, Li Erran Li, Eric P. Xing.
Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms, AISTATS, 2021. paper
Alicia Curth, Mihaela van der Schaar.
Causal Effect Inference for Structured Treatments, NeurIPS, 2021. paper code
Jean Kaddour, Yuchen Zhu, Qi Liu, Matt J. Kusner, Ricardo Silva.
Treatment Effect Estimation with Disentangled Latent Factors, AAAI, 2021. paper code
Weijia Zhang, Lin Liu, Jiuyong Li.
Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments, arXiv, 2020. paper
Victor Chernozhukov, Mert Demirer, Esther Duflo, Iván Fernández-Val.
Quasi-Oracle Estimation of Heterogeneous Treatment Effects, arXiv, 2019. paper
Xinkun Nie, Stefan Wager.
Generalized Random Forests, Annals of Statistics, 2019. paper
Susan Athey, Julie Tibshirani, Stefan Wager.
Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments, NeurIPS, 2019. paper
Vasilis Syrgkanis, Victor Lei, Miruna Oprescu, Maggie Hei, Keith Battocchi, Greg Lewis.
Orthogonal Random Forest for Causal Inference, PMLR, 2019. paper
Miruna Oprescu, Vasilis Syrgkanis, Zhiwei Steven Wu.
Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning, PNAS, 2019. paper
Sören R. Künzel, Jasjeet S. Sekhon, Peter J. Bickel, Bin Yu.
Machine Learning Analysis of Heterogeneity in the Effect of Student Mindset Interventions, Observational Studies, 2019. paper
Fredrik D. Johansson.
Estimation and Inference of Heterogeneous Treatment Effects using Random Forests, JASA, 2018. paper
Stefan Wager, Susan Athey.
Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design, PMLR, 2018. paper
Ahmed Alaa, Mihaela Schaar.
Transfer Learning for Estimating Causal Effects using Neural Networks, arXiv, 2018. paper
Sören R. Künzel, Bradly C. Stadie, Nikita Vemuri, Varsha Ramakrishnan, Jasjeet S. Sekhon, Pieter Abbeel.
Recursive partitioning for heterogeneous causal effects, PNAS, 2016. paper
Susan Athey, Guido Imbens.
Machine Learning Methods for Estimating Heterogeneous Causal Effects, ArXiv, 2015. paper
Susan Athey, Guido W. Imbens.
VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments, ICLR, 2021. paper code
Lizhen Nie, Mao Ye, Qiang Liu, Dan Nicolae.
Learning Counterfactual Representations for Estimating Individual Dose-Response Curves, AAAI, 2020. paper code
Patrick Schwab, Lorenz Linhardt, Stefan Bauer, Joachim M. Buhmann, Walter Karlen.
Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks, NeurIPS, 2020. paper code
Ioana Bica, James Jordon, Mihaela van der Schaar.
Learning Individual Causal Effects from Networked Observational Data, WSDM, 2020. paper code
Ruocheng Guo, Jundong Li, Huan Liu.
Learning Overlapping Representations for the Estimation of Individualized Treatment Effects, AISTATS, 2020. paper
Yao Zhang, Alexis Bellot, Mihaela van der Schaar.
Adapting Neural Networks for the Estimation of Treatment Effects, arXiv, 2019. paper code
Claudia Shi, David M. Blei, Victor Veitch.
Program Evaluation and Causal Inference with High-Dimensional Data, arXiv, 2018. paper
Alexandre Belloni, Victor Chernozhukov, Ivan Fernández-Val, Christian Hansen.
GANITE: Estimation of Individualized Treatment Effects using Generative Adversarial Nets, ICLR, 2018. paper code
Jinsung Yoon, James Jordon, Mihaela van der Schaar.
Estimation of Individual Treatment Effect in Latent Confounder Models via Adversarial Learning, arXiv, 2018. paper
Changhee Lee, Nicholas Mastronarde, Mihaela van der Schaar.
Deep IV: A Flexible Approach for Counterfactual Prediction, PMLR, 2017. paper
Uri Shalit, Fredrik D. Johansson, David Sontag.
Causal Effect Inference with Deep Latent-Variable Models, arXiv, 2017. paper code
Christos Louizos, Uri Shalit, Joris Mooij, David Sontag, Richard Zemel, Max Welling.
Estimating individual treatment effect: generalization bounds and algorithms, PMLR, 2017. paper code
Uri Shalit, Fredrik D. Johansson, David Sontag.
Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders, ICML, 2020. paper code
Ioana Bica, Ahmed M. Alaa, Mihaela van der Schaar.
Estimating Counterfactual Treatment Outcomes over Time through Adversarially Balanced Representations, ICLR, 2020. paper code
Ioana Bica, Ahmed M. Alaa, James Jordon, Mihaela van der Schaar.
Generative Learning of Counterfactual for Synthetic Control Applications in Econometrics, arXiv, 2019. paper
Chirag Modi, Uros Seljak.
Robust Synthetic Control, JMLR, 2019. paper
Muhammad Amjad, Devavrat Shah, Dennis Shen.
ArCo: An artificial counterfactual approach for high-dimensional panel time-series data, Journal of Econometrics, 2018. paper
Carlos Carvalho, Ricardo Masini, Marcelo C. Medeiros.
Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks, NIPS, 2018. paper code
Sonali Parbhoo, Stefan Bauer, Patrick Schwab.
Deep Structural Causal Models for Tractable Counterfactual Inference, NeurIPS, 2020. paper code
Nick Pawlowski, Daniel C. Castro, Ben Glocker.
NCoRE: Neural Counterfactual Representation Learning for Combinations of Treatments, arXiv, 2021. paper
Sonali Parbhoo, Stefan Bauer, Patrick Schwab.
Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks, arXiv, 2019. paper code
Patrick Schwab, Lorenz Linhardt, Walter Karlen.
Representation Learning for Treatment Effect Estimation from Observational Data, NeurIPS, 2019. paper
Liuyi Yao et al.
Invariant Models for Causal Transfer Learning, JMLR, 2018. paper
Mateo Rojas-Carulla, Bernhard Schölkopf, Richard Turner, Jonas Peters.
Learning Representations for Counterfactual Inference, arXiv, 2018. paper code
Fredrik D. Johansson, Uri Shalit, David Sontag.
Sparsity Double Robust Inference of Average Treatment Effects, arXiv, 2019. paper
Jelena Bradic, Stefan Wager, Yinchu Zhu.
Deep Neural Networks for Estimation and Inference, arXiv, 2019. paper
Max H. Farrell, Tengyuan Liang, Sanjog Misra.
Deep Counterfactual Networks with Propensity-Dropout, arXiv, 2017. paper
Ahmed M. Alaa, Michael Weisz, Mihaela van der Schaar.
Double/Debiased Machine Learning for Treatment and Causal Parameters, arXiv, 2017. paper
Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, James Robins.
Doubly Robust Policy Evaluation and Optimization, Statistical Science, 2014. paper
Miroslav Dudík, Dumitru Erhan, John Langford, Lihong Li.
Differentiable Causal Discovery Under Unmeasured Confounding, arXiv, 2021. paper
Rohit Bhattacharya, Tushar Nagarajan, Daniel Malinsky, Ilya Shpitser.
Causal Discovery with Attention-Based Convolutional Neural Networks, Machine Learning and Knowledge Extraction, 2019. paper code
Meike Nauta, Doina Bucur, Christin Seifert.
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms, arXiv, 2019. paper
Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa Bilaniuk, Anirudh Goyal, Christopher Pal.
Causal Discovery with Reinforcement Learning, arXiv, 2019. paper
Shengyu Zhu, Zhitang Chen.
CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training, arXiv, 2019. paper
Murat Kocaoglu, Christopher Snyder, Alexandros G. Dimakis, Sriram Vishwanath.
Learning When-to-Treat Policies, arXiv, 2019. paper
Xinkun Nie, Emma Brunskill, Stefan Wager.
Learning Neural Causal Models from Unknown Interventions, arXiv, 2019. paper code
Nan Rosemary Ke, Olexa Bilaniuk, Anirudh Goyal, Stefan Bauer, Hugo Larochelle, Chris Pal, Yoshua Bengio.
Counterfactual Policy Optimization Using Domain-Adversarial Neural Networks, ICML, 2018. paper
Onur Atan, William R. Zame, Mihaela van der Schaar.
Causal Bandits: Learning Good Interventions via Causal Inference, NIPS, 2016. paper
Finnian Lattimore, Tor Lattimore, Mark D. Reid.
Counterfactual Risk Minimization: Learning from Logged Bandit Feedback, arXiv, 2015. paper
Adith Swaminathan, Thorsten Joachims.
The Deconfounded Recommender: A Causal Inference Approach to Recommendation, arXiv, 2019. paper code
Yixin Wang, Dawen Liang, Laurent Charlin, David M. Blei.
The Blessings of Multiple Causes, arXiv, 2019. paper
Yixin Wang, David M. Blei.
Recommendations as Treatments: Debiasing Learning and Evaluation, PMLR, 2016. paper
Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, Thorsten Joachims.
Collaborative Prediction and Ranking with Non-Random Missing Data, RecSys, 2009. paper
Benjamin M. Marlin, Richard S. Zemel.
Counterfactual Multi-Agent Policy Gradients, AAAI, 2018. paper
Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, Shimon Whiteson.
Ultra-high dimensional variable selection for doubly robust causal inference, Biometrics, 2022. paper code slides
Dingke Tang, Dehan Kong, Wenliang Pan, Linbo Wang
Outcome‐adaptive lasso: variable selection for causal inference, Biometrics 2017. paper video
Susan M. Shortreed, Ashkan Ertefaie
Double machine learning-based programme evaluation under unconfoundedness, The Econometrics Journal, 2022. paper
Michael C Knaus.
State-Building through Public Land Disposal? An Application of Matrix Completion for Counterfactual Prediction, arXiv, 2021. paper code
Jason Poulos.
RNN-based counterfactual prediction, with an application to homestead policy and public schooling, JRSS-C, 2021. paper code
Jason Poulos, Shuxi Zeng.
Estimating Treatment Effects with Causal Forests: An Application, arXiv, 2019. paper
Susan Athey, Stefan Wager.
Ensemble Methods for Causal Effects in Panel Data Settings, AER P&P, 2019. paper
Susan Athey, Mohsen Bayati, Guido W. Imbens, Zhaonan Qu.
Counterfactual Data Augmentation for Neural Machine Translation, ACL, 2021. paper code
Qi Liu, Matt Kusner, Phil Blunsom.
Everything Has a Cause: Leveraging Causal Inference in Legal Text Analysis, arXIv, 2021. paper code
Xiao Liu, Da Yin, Yansong Feng, Yuting Wu, Dongyan Zhao.
Causal Effects of Linguistic Properties, arXIv, 2021. paper
Reid Pryzant, Dallas Card, Dan Jurafsky, Victor Veitch, Dhanya Sridhar.
Sketch and Customize: A Counterfactual Story Generator, arXIv, 2021. paper
Changying Hao, Liang Pang, Yanyan Lan, Yan Wang, Jiafeng Guo, Xueqi Cheng.
Counterfactual Generator: A Weakly-Supervised Method for Named Entity Recognition, EMNLP, 2020. paper code
Xiangji Zeng, Yunliang Li, Yuchen Zhai, Yin Zhang.
Using Text Embeddings for Causal Inference, arXIv, 2019. paper code
Victor Veitch, Dhanya Sridhar, David M. Blei.
Counterfactual Story Reasoning and Generation, arXIv, 2019. paper
Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra Bhagavatula, Elizabeth Clark, Yejin Choi.
How to Make Causal Inferences Using Texts, arXIv, 2018. paper
Naoki Egami, Christian J. Fong, Justin Grimmer, Margaret E. Roberts, Brandon M. Stewart.
Targeted learning in observational studies with multi-level treatments: An evaluation of antipsychotic drug treatment safety for patients with serious mental illnesses, arXIv, 2022. paper code
Jason Poulos, Marcela Horvitz-Lennon, Katya Zelevinsky, Thomas Huijskens, Pooja Tyagi, Jiaju Yan, Jordi Diaz, Tudor Cristea-Platon, Sharon-Lise Normand.
NeurIPS 2021 Workshop link
UAI 2021 Workshop link
KDD 2021 Workshop link
ICML 2021 Workshop link
EMNLP 2021 Workshop link
NeurIPS 2020 Workshop link
NeurIPS 2019 Workshop link
NIPS 2018 Workshop link
NIPS 2017 Workshop link
NIPS 2016 Workshop link
NIPS 2013 Workshop link
Causal Inference 360: A Python package for inferring causal effects from observational data. link
WhyNot: A Python package connecting tools from causal inference and reinforcement learning with a range of complex simulators link
EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation link
Uplift modeling and causal inference with machine learning algorithms link
CS7792 - Counterfactual Machine Learning link
Introduction to Causal Inference link
Machine Learning & Causal Inference: A Short Course link
KDD 2020: Lecture Style Tutorials: Casual Inference Meets Machine Learning link
An index of algorithms for learning causality with data link
An index of datasets that can be used for learning causality link
Papers about Causal Inference and Language link