项目作者: mynameisvinn

项目描述 :
evolution strategies for classification
高级语言: Python
项目地址: git://github.com/mynameisvinn/dawkins.git
创建时间: 2018-05-09T14:09:37Z
项目社区:https://github.com/mynameisvinn/dawkins

开源协议:

下载


dawkins

apply evolution strategies to supervised, classification tasks. at every iteration (“generation”), a population of parameter vectors (“genotypes”) is perturbed (“mutated”) and their objective function value (“fitness”) is evaluated.

why evolution strategies (es)?

es is an optimization technique that learns parameters without backpropagation. no gradients are computed - why do things the easy way when you can do it the hard way?

example

if you know scikit, you know the drill.

  1. # iris dataset
  2. iris = learn.datasets.load_dataset('iris')
  3. X = iris.data
  4. y = np.eye(3)[iris.target]
  5. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
  6. # create and fit es model
  7. from Dawkins import Dawkins
  8. d = Dawkins(n_pop=200, n_generations=2000)
  9. d.fit(X_train, y_train)
  10. d.predict(X_test, y_test)