项目作者: Krastanov

项目描述 :
Clifford circuits and other quantum Stabilizer formalism tools.
高级语言: Julia
项目地址: git://github.com/Krastanov/QuantumClifford.jl.git
创建时间: 2019-07-09T19:47:16Z
项目社区:https://github.com/Krastanov/QuantumClifford.jl

开源协议:GNU General Public License v3.0

下载


QuantumClifford.jl


















Documentation
Documentation of latest stable version
Documentation of dev version
Continuous integration
GitHub Workflow Status
Buildkite Workflow Status
Code coverage
Test coverage from codecov
Static analysis with
JET static analysis
Aqua QA

A Julia package for working with quantum stabilizer states and Clifford circuits
that act on them. Graphs states are also supported. The package is already very fast for the majority of common operations, but there are still many low-hanging fruits performance-wise. See the detailed suggested readings & references page for background on the various algorithms.

To install it use:

  1. ] add QuantumClifford

Works efficiently with
pure and
mixed stabilizer
states of thousands of qubits
as well as
sparse or dense Clifford operations
acting upon them.

Implements Pauli frames for fast sampling.

Provides
canonicalization,
projection, and
generation operations,
as well as
partial traces.

  1. julia> P"X" * P"Z"
  2. -iY
  3. julia> P"X" P"Z"
  4. + XZ
  5. julia> S"-XX
  6. +ZZ"
  7. - XX
  8. + ZZ
  9. julia> tCNOT * S"-XX
  10. +ZZ"
  11. - X_
  12. + _Z

The code is vectorized and multithreaded.

Fast, in-place, allocation free implementations.


Quick Benchmarks (click to expand)

#### Comparison against other Clifford simulators

The only other simulator of similar performance I know of is Stim.

The “low level” functionality is of similar performance in Stim and QuantumClifford but different tradeoffs are made at the higher levels: to multiply in-place 1M-qubit Pauli operators Stim and QuantumClifford.jl both need around 15μs. The difference is inconsequential and depends on compilers and hardware.

Of note is that Stim achieved this performance through high-quality C++ SIMD code of significant sophistication, while QuantumClifford.jl is implemented in pure and simple Julia.

#### Multiplying two 1 gigaqubit Paulis in 13 ms

jldoctest julia> a = random_pauli(1_000_000_000); julia> b = random_pauli(1_000_000_000); julia> @benchmark QuantumClifford.mul_left!(a,b) BenchmarkTools.Trial: 373 samples with 1 evaluation. Range (min … max): 13.209 ms … 14.304 ms ┊ GC (min … max): 0.00% … 0.00% Time (median): 13.355 ms ┊ GC (median): 0.00% Time (mean ± σ): 13.427 ms ± 173.503 μs ┊ GC (mean ± σ): 0.00% ± 0.00% Memory estimate: 0 bytes, allocs estimate: 0.

#### Canonicalization of a random 1000-qubit stabilizer in 9 ms

jldoctest julia> @benchmark canonicalize!(s) setup=(s=random_stabilizer(1000)) BenchmarkTools.Trial: 6 samples with 1 evaluation. Range (min … max): 8.516 ms … 8.614 ms ┊ GC (min … max): 0.00% … 0.00% Time (median): 8.536 ms ┊ GC (median): 0.00% Time (mean ± σ): 8.550 ms ± 35.883 μs ┊ GC (mean ± σ): 0.00% ± 0.00% Memory estimate: 0 bytes, allocs estimate: 0.

#### Dense tableaux multiplication (tensor product of 500 CNOT gates acting 1000 qubits) in 17 ms

jldoctest julia> @benchmark apply!(s, gate) setup=(s=random_stabilizer(1000); gate=tensor_pow(tCNOT,500)) BenchmarkTools.Trial: 6 samples with 1 evaluation. Range (min … max): 16.879 ms … 17.064 ms ┊ GC (min … max): 0.00% … 0.00% Time (median): 17.010 ms ┊ GC (median): 0.00% Time (mean ± σ): 16.997 ms ± 63.050 μs ┊ GC (mean ± σ): 0.00% ± 0.00% Memory estimate: 800 bytes, allocs estimate: 4.

#### Sparse gate application to only specified qubits in a 1000 qubit tableau in 3 μs

jldoctest julia> @benchmark apply!(s, sCNOT(32,504)) setup=(s=random_stabilizer(1000)) BenchmarkTools.Trial: 6 samples with 8 evaluations. Range (min … max): 2.867 μs … 3.228 μs ┊ GC (min … max): 0.00% … 0.00% Time (median): 3.043 μs ┊ GC (median): 0.00% Time (mean ± σ): 3.049 μs ± 119.106 ns ┊ GC (mean ± σ): 0.00% ± 0.00% Memory estimate: 0 bytes, allocs estimate: 0.

#### Measuring a dense 1000 qubit Pauli operator in 18 μs

jldoctest julia> s=random_destabilizer(1000); p=random_pauli(1000); julia> @benchmark project!(_s,_p) setup=(_s=copy(s);_p=copy(p)) evals=1 BenchmarkTools.Trial: 10000 samples with 1 evaluation. Range (min … max): 17.753 μs … 39.444 μs ┊ GC (min … max): 0.00% … 0.00% Time (median): 21.971 μs ┊ GC (median): 0.00% Time (mean ± σ): 21.893 μs ± 2.234 μs ┊ GC (mean ± σ): 0.00% ± 0.00% Memory estimate: 480 bytes, allocs estimate: 4.

#### Measuring a single qubit in a 1000 qubit tableau in 15 μs

jldoctest julia> s=MixedDestabilizer(random_destabilizer(1000)); julia> @benchmark projectY!(_s,42) setup=(_s=copy(s)) evals=1 BenchmarkTools.Trial: 10000 samples with 1 evaluation. Range (min … max): 15.379 μs … 37.630 μs ┊ GC (min … max): 0.00% … 0.00% Time (median): 16.912 μs ┊ GC (median): 0.00% Time (mean ± σ): 17.120 μs ± 1.335 μs ┊ GC (mean ± σ): 0.00% ± 0.00% Memory estimate: 464 bytes, allocs estimate: 5.

Benchmarks executed on a single thread on Ryzen Zen4 16-core CPU:

julia> versioninfo() Julia Version 1.9.1 Commit 147bdf428cd (2023-06-07 08:27 UTC) Platform Info: OS: Linux (x86_64-linux-gnu) CPU: 32 × AMD Ryzen 9 7950X 16-Core Processor WORD_SIZE: 64 LIBM: libopenlibm LLVM: libLLVM-14.0.6 (ORCJIT, znver3) Threads: 1 on 32 virtual cores

More detailed benchmarks can be seen at github.com/QuantumSavory/QuantumCliffordBenchmarksLog.