项目作者: dhaalves

项目描述 :
Implementation of "Cost-Effective Active Learning for Deep Image Classification" paper
高级语言: Python
项目地址: git://github.com/dhaalves/CEAL_keras.git
创建时间: 2018-04-01T01:06:53Z
项目社区:https://github.com/dhaalves/CEAL_keras

开源协议:

下载


Information

Cost-Effective Active Learning (CEAL) for Deep Image Classification Implementation with keras

Model - Resnet18v2

Dataset - Cifar10

Running

  1. python CEAL_keras.py

Parameters

  1. -h, --help show this help message and exit
  2. -verbose VERBOSE Verbosity mode. 0 = silent, 1 = progress bar, 2 = one
  3. line per epoch. default: 0
  4. -epochs EPOCHS Number of epoch to train. default: 5
  5. -batch_size BATCH_SIZE
  6. Number of samples per gradient update. default: 32
  7. -chkt_filename CHKT_FILENAME
  8. Model Checkpoint filename to save
  9. -t FINE_TUNNING_INTERVAL, --fine_tunning_interval FINE_TUNNING_INTERVAL
  10. Fine-tuning interval. default: 1
  11. -T MAXIMUM_ITERATIONS, --maximum_iterations MAXIMUM_ITERATIONS
  12. Maximum iteration number. default: 10
  13. -i INITIAL_ANNOTATED_PERC, --initial_annotated_perc INITIAL_ANNOTATED_PERC
  14. Initial Annotated Samples Percentage. default: 0.1
  15. -dr THRESHOLD_DECAY, --threshold_decay THRESHOLD_DECAY
  16. Threshold decay rate. default: 0.0033
  17. -delta DELTA High confidence samples selection threshold. default:
  18. 0.05
  19. -K UNCERTAIN_SAMPLES_SIZE, --uncertain_samples_size UNCERTAIN_SAMPLES_SIZE
  20. Uncertain samples selection size. default: 2000
  21. -uc UNCERTAIN_CRITERIA, --uncertain_criteria UNCERTAIN_CRITERIA
  22. Uncertain selection Criteria: 'lc' (Least Confidence),
  23. 'ms' (Margin Sampling), 'en' (Entropy). default: lc
  24. -ce COST_EFFECTIVE, --cost_effective COST_EFFECTIVE
  25. whether to use Cost Effective high confidence sample
  26. pseudo-labeling. default: True