7th (top 2%) solution for Shopee Code League 2020 - Marketing Analytics
This is source code/solution for 7th place (top 2%) in Private LB with score ? of [Student] Shopee Code League 2020 - Marketing Analytics. Check Overview Archive and Leaderboard Archive if Kaggle is down or the link is invalid.
Some of the notebook are run on different environment
Environment Name | Description |
---|---|
Kaggle CPU | 2C/4T CPU, 16GB RAM |
Local | 6C/12T CPU, 16GB RAM, 16GB Swapfile |
To ensure you can run jupyter notebook which runs on “Local” environment, make sure that :
python3.8 -m pip install matplotlib seaborn pandas numpy mljar-supervised
Filename | Link to Kaggle Kernel | Environment | Description |
---|---|---|---|
01_preprocessing.ipynb | https://www.kaggle.com/ilosvigil/scl-2020-8-preprocessing?scriptVersionId=40024448 | Kaggle CPU | Minimum amount of preprocessing |
02a_lightgbm_v20.ipynb | https://www.kaggle.com/ilosvigil/scl-2020-8-lightgbm?scriptVersionId=40306747 | Kaggle CPU | Uses LightGBM library |
02a_lightgbm_v21.ipynb | https://www.kaggle.com/ilosvigil/scl-2020-8-lightgbm?scriptVersionId=40332941 | Kaggle CPU | Uses LightGBM library |
02a_lightgbm_v23.ipynb | https://www.kaggle.com/ilosvigil/scl-2020-8-lightgbm?scriptVersionId=40371184 | Kaggle CPU | Uses LightGBM library |
02b_mljar.ipynb | - | Local | Use mljar-supervised AutoML library |
The dataset is available on this repository and/or Kaggle datasets platform.
Created By | Filename/directory path | Link to Kaggle datasets |
---|---|---|
Shopee | data/raw |
https://www.kaggle.com/c/student-shopee-code-league-marketing-analytics/data |
Notebook : 01_preprocessing.ipynb | data/processed |
https://www.kaggle.com/ilosvigil/shopee-marketing-data |
Notebook filename | Submission filename | Used for Final Score | Public LB | Private LB |
---|---|---|---|---|
02a_lightgbm_v20.ipynb | submission_best_mean.csv | No | 0.52518 | 0.52700 |
submission_best_mode.csv | No | 0.52442 | 0.52488 | |
submission_ensemble_mean.csv | No | 0.52685 | 0.52871 | |
submission_ensemble_mode.csv | No | 0.52608 | 0.52885 | |
submission_weighted_ensemble_mean.csv | No | 0.52685 | 0.52885 | |
02a_lightgbm_v21.ipynb | submission_best_mean.csv | No | 0.52854 | 0.52979 |
submission_best_mode.csv | No | 0.52671 | 0.52836 | |
submission_ensemble_mean.csv | No | 0.52273 | 0.52523 | |
submission_ensemble_mode.csv | No | 0.51941 | 0.52384 | |
submission_weighted_ensemble_mean.csv | No | 0.52344 | 0.52496 | |
02a_lightgbm_v23.ipynb | submission_best_mean.csv | No | 0.52510 | 0.52426 |
submission_best_mode.csv | No | 0.52511 | 0.52433 | |
submission_ensemble_mean.csv | No | 0.53174 | 0.53409 | |
submission_ensemble_mode.csv | No | 0.53189 | 0.53392 | |
submission_weighted_ensemble_mean.csv | Yes | 0.53007 | 0.53444 | |
02b_mljar.ipynb | submission_2020-08-06 22:24:43.301671.csv | Yes | 0.53712 | 0.53173 |
This guide assume you change path or move the file correctly
01_preprocessing.ipynb
02a_lightgbm_v20.ipynb
, 02a_lightgbm_v21.ipynb
, 02a_lightgbm_v23.ipynb
or 02b_mljar.ipynb