项目作者: stdlib-js

项目描述 :
Beta distribution logarithm of probability density function (PDF).
高级语言: JavaScript
项目地址: git://github.com/stdlib-js/stats-base-dists-beta-logpdf.git
创建时间: 2021-06-15T17:32:26Z
项目社区:https://github.com/stdlib-js/stats-base-dists-beta-logpdf

开源协议:Apache License 2.0

下载




About stdlib…

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.


The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.


When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.


To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!


Logarithm of Probability Density Function

[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]

[Beta][beta-distribution] distribution logarithm of probability density function (PDF).



The [probability density function][pdf] (PDF) for a [beta][beta-distribution] random variable is



math f(x;\alpha,\beta)= \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) + \Gamma(\beta)}{x^{\alpha-1}(1-x)^{\beta-1}} & \text{ for } x \in (0,1) \\ 0 & \text{ otherwise } \end{cases}





where alpha > 0 is the first shape parameter and beta > 0 is the second shape parameter.



## Installation

bash npm install @stdlib/stats-base-dists-beta-logpdf

Alternatively,

- To load the package in a website via a script tag without installation and bundlers, use the [ES Module][es-module] available on the [esm][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [deno][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [umd][umd-url] branch (see [README][umd-readme]).

The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.



## Usage

javascript var logpdf = require( '@stdlib/stats-base-dists-beta-logpdf' );

#### logpdf( x, alpha, beta )

Evaluates the natural logarithm of the [probability density function][pdf] (PDF) for a [beta][beta-distribution] distribution with parameters alpha (first shape parameter) and beta (second shape parameter).

javascript var y = logpdf( 0.5, 0.5, 1.0 ); // returns ~-0.347 y = logpdf( 0.1, 1.0, 1.0 ); // returns 0.0 y = logpdf( 0.8, 4.0, 2.0 ); // returns ~0.717

If provided an input value x outside the support [0,1], the function returns -Infinity.

javascript var y = logpdf( -0.1, 1.0, 1.0 ); // returns -Infinity y = logpdf( 1.1, 1.0, 1.0 ); // returns -Infinity

If provided NaN as any argument, the function returns NaN.

javascript var y = logpdf( NaN, 1.0, 1.0 ); // returns NaN y = logpdf( 0.0, NaN, 1.0 ); // returns NaN y = logpdf( 0.0, 1.0, NaN ); // returns NaN

If provided alpha <= 0, the function returns NaN.

javascript var y = logpdf( 0.5, 0.0, 1.0 ); // returns NaN y = logpdf( 0.5, -1.0, 1.0 ); // returns NaN

If provided beta <= 0, the function returns NaN.

javascript var y = logpdf( 0.5, 1.0, 0.0 ); // returns NaN y = logpdf( 0.5, 1.0, -1.0 ); // returns NaN

#### logpdf.factory( alpha, beta )

Returns a function for evaluating the natural logarithm of the [PDF][pdf] for a [beta][beta-distribution] distribution with parameters alpha (first shape parameter) and beta (second shape parameter).

javascript var mylogPDF = logpdf.factory( 0.5, 0.5 ); var y = mylogPDF( 0.8 ); // returns ~-0.228 y = mylogPDF( 0.3 ); // returns ~-0.364



## Notes

- In virtually all cases, using the logpdf or logcdf functions is preferable to manually computing the logarithm of the pdf or cdf, respectively, since the latter is prone to overflow and underflow.



## Examples



javascript var randu = require( '@stdlib/random-base-randu' ); var EPS = require( '@stdlib/constants-float64-eps' ); var logpdf = require( '@stdlib/stats-base-dists-beta-logpdf' ); var alpha; var beta; var x; var y; var i; for ( i = 0; i < 10; i++ ) { x = randu(); alpha = ( randu()*5.0 ) + EPS; beta = ( randu()*5.0 ) + EPS; y = logpdf( x, alpha, beta ); console.log( 'x: %d, α: %d, β: %d, ln(f(x;α,β)): %d', x.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) ); }




## C APIs







### Usage

c #include "stdlib/stats/base/dists/beta/logpdf.h"

#### stdlib_base_dists_beta_logpdf( x, alpha, beta )

Evaluates the natural logarithm of the probability density function (logPDF) for a beta distribution with first shape parameter alpha and second shape parameter beta.

c double y = stdlib_base_dists_beta_logpdf( 0.5, 1.0, 1.0 ); // returns 0.0

The function accepts the following arguments:

- x: [in] double input value.
- alpha: [in] double first shape parameter.
- beta: [in] double second shape parameter.

c double stdlib_base_dists_beta_logpdf( const double x, double alpha, const double beta );





### Examples

c #include "stdlib/stats/base/dists/beta/logpdf.h" #include "stdlib/constants/float64/eps.h" #include <stdlib.h> #include <stdio.h> static double random_uniform( const double min, const double max ) { double v = (double)rand() / ( (double)RAND_MAX + 1.0 ); return min + ( v*(max-min) ); } int main( void ) { double alpha; double beta; double x; double y; int i; for ( i = 0; i < 10; i++ ) { x = random_uniform( 0.0, 1.0 ); alpha = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 5.0 ); beta = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 5.0 ); y = stdlib_base_dists_beta_logpdf( x, alpha, beta ); printf( "x: %lf, α: %lf, β: %lf, ln(f(x;α,β)): %lf\n", x, alpha, beta, y ); } }





*

## Notice

This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].

#### Community

[![Chat][chat-image]][chat-url]

—-

## License

See [LICENSE][stdlib-license].


## Copyright

Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].