项目作者: stdlib-js

项目描述 :
Cauchy distribution natural logarithm of cumulative distribution function (CDF).
高级语言: JavaScript
项目地址: git://github.com/stdlib-js/stats-base-dists-cauchy-logcdf.git
创建时间: 2021-06-15T17:44:21Z
项目社区:https://github.com/stdlib-js/stats-base-dists-cauchy-logcdf

开源协议:Apache License 2.0

下载




About stdlib…

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.


The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.


When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.


To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!


Logarithm of Cumulative Distribution Function

[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]

[Cauchy][cauchy-distribution] distribution logarithm of [cumulative distribution function][cdf].



The [cumulative distribution function][cdf] for a [Cauchy][cauchy-distribution] random variable is



math F(x; x_0,\gamma)=\frac{1}{\pi} \mathop{\mathrm{arctan}} \left(\frac{x-x_0}{\gamma}\right)+\frac{1}{2}





where x0 is the location parameter and gamma > 0 is the scale parameter.



## Installation

bash npm install @stdlib/stats-base-dists-cauchy-logcdf

Alternatively,

- To load the package in a website via a script tag without installation and bundlers, use the [ES Module][es-module] available on the [esm][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [deno][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [umd][umd-url] branch (see [README][umd-readme]).

The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.



## Usage

javascript var logcdf = require( '@stdlib/stats-base-dists-cauchy-logcdf' );

#### logcdf( x, x0, gamma )

Evaluates the natural logarithm of the [cumulative distribution function][cdf] (CDF) for a [Cauchy][cauchy-distribution] distribution with parameters x0 (location parameter) and gamma > 0 (scale parameter).

javascript var y = logcdf( 4.0, 0.0, 2.0 ); // returns ~-0.16 y = logcdf( 1.0, 0.0, 2.0 ); // returns ~-0.435 y = logcdf( 1.0, 3.0, 2.0 ); // returns ~-1.386

If provided NaN as any argument, the function returns NaN.

javascript var y = logcdf( NaN, 0.0, 2.0 ); // returns NaN y = logcdf( 1.0, 2.0, NaN ); // returns NaN y = logcdf( 1.0, NaN, 3.0 ); // returns NaN

If provided gamma <= 0, the function returns NaN.

javascript var y = logcdf( 2.0, 0.0, -1.0 ); // returns NaN y = logcdf( 2.0, 0.0, 0.0 ); // returns NaN

#### logcdf.factory( x0, gamma )

Returns a function for evaluating the natural logarithm of the [cumulative distribution function][cdf] of a [Cauchy][cauchy-distribution] distribution with parameters x0 (location parameter) and gamma > 0 (scale parameter).

javascript var mylogcdf = logcdf.factory( 10.0, 2.0 ); var y = mylogcdf( 10.0 ); // returns ~-0.693 y = mylogcdf( 12.0 ); // returns ~-0.288



## Notes

- In virtually all cases, using the logpdf or logcdf functions is preferable to manually computing the logarithm of the pdf or cdf, respectively, since the latter is prone to overflow and underflow.



## Examples



javascript var randu = require( '@stdlib/random-base-randu' ); var EPS = require( '@stdlib/constants-float64-eps' ); var logcdf = require( '@stdlib/stats-base-dists-cauchy-logcdf' ); var gamma; var x0; var x; var y; var i; for ( i = 0; i < 10; i++ ) { x = randu() * 10.0; x0 = randu() * 10.0; gamma = ( randu()*10.0 ) + EPS; y = logcdf( x, x0, gamma ); console.log( 'x: %d, x0: %d, γ: %d, ln(F(x;x0,γ)): %d', x, x0, gamma, y ); }




## C APIs







### Usage

c #include "stdlib/stats/base/dists/cauchy/logcdf.h"

#### stdlib_base_dists_cauchy_logcdf( x, x0, gamma )

Evaluates the natural logarithm of the [cumulative distribution function][cdf] (CDF) for a [Cauchy][cauchy-distribution] distribution with parameters x0 (location parameter) and gamma > 0 (scale parameter).

c double out = stdlib_base_dists_cauchy_logcdf( 4.0, 0.0, 2.0 ); // returns ~-0.16

The function accepts the following arguments:

- x: [in] double input value.
- x0: [in] double location parameter.
- gamma: [in] double scale parameter.

c double stdlib_base_dists_cauchy_logcdf( const double x, const double x0, const double gamma );





### Examples

c #include "stdlib/stats/base/dists/cauchy/logcdf.h" #include "stdlib/constants/float64/eps.h" #include <stdlib.h> #include <stdio.h> static double random_uniform( const double min, const double max ) { double v = (double)rand() / ( (double)RAND_MAX + 1.0 ); return min + ( v*(max-min) ); } int main( void ) { double gamma; double x0; double x; double y; int i; for ( i = 0; i < 25; i++ ) { x = random_uniform( 0.0, 10.0 ); x0 = random_uniform( 0.0, 10.0 ); gamma = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 10.0 ); y = stdlib_base_dists_cauchy_logcdf( x, x0, gamma ); printf( "x: %lf, x0: %lf, γ: %lf, ln(F(x;x0,γ)): %lf\n", x, x0, gamma, y ); } }



*

## Notice

This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].

#### Community

[![Chat][chat-image]][chat-url]

—-

## License

See [LICENSE][stdlib-license].


## Copyright

Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].