Neural Ordinary Differential Equations for model order reduction of time-dependent PDEs
Using a Tensorflow-based implementation of Neural ODEs (NODE) to develop non-intrusive reduced order models for CFD problems. Numerical comparisons are made with non-intrusive reduced order models (NIROM) that use Dynamic Mode Decomposition (DMD) as well as a combination of linear dimension reduction using Proper Orthogonal Decomposition (POD) and latent-space evolution using Radial Basis Function (RBF) interpolation.
For details please refer to -
S. Dutta, P. Rivera-casillas, and M. W. Farthing, “Neural Ordinary Differential Equations for Data-Driven Reduced Order Modeling of Environmental Hydrodynamics,” in Proceedings of the AAAI 2021 Spring Symposium on Combining Artificial Intelligence and Machine Learning with Physical Sciences, 2021. Proceedings
arXiv
A list of all the package requirements along with version information is provided in the requirements file.
Shallow Water models - Link,
Navier Stokes model - Link.
These data files should be placed in the
This project is licensed under the MIT License - see the LICENSE file for details
If you found this library useful in your research, please consider citing
@inproceedings{dutta2021aaai,
title={Neural Ordinary Differential Equations for Data-Driven Reduced Order Modeling of Environmental Hydrodynamics},
author={Dutta, Sourav and Rivera-Casillas, Peter and Farthing, Matthew W.},
booktitle={Proceedings of the AAAI 2021 Spring Symposium on Combining Artificial Intelligence and Machine Learning with Physical Sciences},
url={https://sites.google.com/view/aaai-mlps/proceedings?authuser=0},
year={2021},
publisher={CEUR-WS},
address={Stanford, CA, USA, March 22nd to 24th, 2021},
}
Inspiration, code snippets, etc.