Calculate the cumulative minimum of a strided array.
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Calculate the cumulative minimum of a strided array.
bash
npm install @stdlib/stats-base-cumin
script
tag without installation and bundlers, use the [ES Module][es-module] available on the [esm
][esm-url] branch (see [README][esm-readme]).deno
][deno-url] branch (see [README][deno-readme] for usage intructions).umd
][umd-url] branch (see [README][umd-readme]).javascript
var cumin = require( '@stdlib/stats-base-cumin' );
javascript
var x = [ 1.0, -2.0, 2.0 ];
var y = [ 0.0, 0.0, 0.0 ];
cumin( x.length, x, 1, y, 1 );
// y => [ 1.0, -2.0, -2.0 ]
Array
][mdn-array] or [typed array
][mdn-typed-array].x
.Array
][mdn-array] or [typed array
][mdn-typed-array].y
.N
and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the cumulative minimum of every other element in x
,javascript
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ];
var y = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];
var v = cumin( 4, x, 2, y, 1 );
// y => [ 1.0, 1.0, -2.0, -2.0, 0.0, 0.0, 0.0, 0.0 ]
typed array
][mdn-typed-array] views.javascript
var Float64Array = require( '@stdlib/array-float64' );
// Initial arrays...
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( x0.length );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
cumin( 4, x1, -2, y1, 1 );
// y0 => <Float64Array>[ 0.0, 0.0, 0.0, 4.0, 2.0, -2.0, -2.0, 0.0 ]
javascript
var x = [ 1.0, -2.0, 2.0 ];
var y = [ 0.0, 0.0, 0.0 ];
cumin.ndarray( x.length, x, 1, 0, y, 1, 0 );
// y => [ 1.0, -2.0, -2.0 ]
x
.y
.typed array
][mdn-typed-array] views mandate a view offset based on the underlying buffer, offset parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative minimum of every other value in x
starting from the second value and to store in the last N
elements of y
starting from the last elementjavascript
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ];
var y = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];
cumin.ndarray( 4, x, 2, 1, y, -1, y.length-1 );
// y => [ 0.0, 0.0, 0.0, 0.0, -2.0, -2.0, -2.0, 1.0 ]
N <= 0
, both functions return y
unchanged.dcumin
][@stdlib/stats/strided/dcumin], [scumin
][@stdlib/stats/strided/scumin], etc.) are likely to be significantly more performant.@stdlib/array-base/accessor
][@stdlib/array/base/accessor]).javascript
var Float64Array = require( '@stdlib/array-float64' );
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var cumin = require( '@stdlib/stats-base-cumin' );
var x = discreteUniform( 10, 0, 100, {
'dtype': 'float64'
});
var y = new Float64Array( x.length );
console.log( x );
console.log( y );
cumin( x.length, x, 1, y, -1 );
console.log( y );