Natural Language Attacks in a Hard Label Black Box Setting.
This repository contains source code for the research work described in our AAAI 2021 paper:
Generating Natural Language Attacks in a Hard Label Black Box Setting
Follow these steps to run the attack from the library:
Fork the repository
Run the following command to install it.
```bash
$ cd TextAttack
$ pip install -e . “.[dev]”
Run the following command to attack bert-base-uncased
trained on MovieReview
dataset.
```bash
$ textattack attack —recipe hard-label-attack —model bert-base-uncased-mr —num-examples 100
Take a look at the models
directory in TextAttack to run the attack across any dataset and any target model.
Download pretrained target models for each dataset bert, lstm, cnn unzip it.
Download the counter-fitted-vectors from here and place it in the main directory.
Download top 50 synonym file from here and place it in the main directory.
Download the glove 200 dimensional vectors from here unzip it.
Use the following command to get the results.
For BERT model
python3 classification_attack.py \
--dataset_path path_to_data_samples_to_attack \
--target_model Type_of_taget_model (bert,wordCNN,wordLSTM) \
--counter_fitting_cos_sim_path path_to_top_50_synonym_file \
--target_dataset dataset_to_attack (imdb,ag,yelp,yahoo,mr) \
--target_model_path path_to_pretrained_target_model \
--USE_cache_path " " \
--max_seq_length 256 \
--sim_score_window 40 \
--nclasses classes_in_the_dataset_to_attack
Example of attacking BERT on IMDB dataset.
python3 classification_attack.py \
--dataset_path data/imdb \
--target_model bert \
--counter_fitting_cos_sim_path mat.txt \
--target_dataset imdb \
--target_model_path bert/imdb \
--USE_cache_path " " \
--max_seq_length 256 \
--sim_score_window 40 \
--nclasses 2
Example of attacking BERT on SNLI dataset.
python3 nli_attack.py \
--dataset_path data/snli \
--target_model bert \
--counter_fitting_cos_sim_path mat.txt \
--target_dataset snli \
--target_model_path bert/snli \
--USE_cache_path "nli_cache" \
--sim_score_window 40
The results will be available in results_hard_label directory for classification task and in results_nli_hard_label for entailment tasks.
For attacking other target models look at the commands
folder.
To train BERT on a particular dataset use the commands provided in the BERT
directory. For training LSTM and CNN models run the train_classifier.py --<model_name> --<dataset>
.
@article{maheshwary2020generating,
title={Generating Natural Language Attacks in a Hard Label Black Box Setting},
author={Maheshwary, Rishabh and Maheshwary, Saket and Pudi, Vikram},
journal={arXiv preprint arXiv:2012.14956},
year={2020}
}