项目作者: irvingzhang0512

项目描述 :
TensorFlow utils and examples.
高级语言: Python
项目地址: git://github.com/irvingzhang0512/TensorBob.git
创建时间: 2018-02-15T01:58:38Z
项目社区:https://github.com/irvingzhang0512/TensorBob

开源协议:

下载


TensorBob

TensorFlow tools

0. dependency

1. tools

1.1. dataset

  • target:
    • create tf.data.Dataset objects with Data Argument.
    • create tf.data.Dataset object for Open Data Source, such as ImageNet, VOC, etc.
    • config by python dicts.
  • Module Architecture:
    • base_dataset.py: tf.data.Dataset wrapper, including BaseDataset and MergedDataset.
    • dataset_utils: utils to create tf.data.Dataset objects configured by python dicts.
    • segmentation_dataset_utils.py: create BaseDataset and MergedDataset object for segmentation task.
    • Open Database:
      • imagenet.py: ImageNet(classification).
      • voc2012.py: VOC2012(classification & segmentation).
      • ade2016.py: Scene Parsing Challenge 2016(segmentation).
      • camvid.py: Cambridge-driving Labeled Video Database(segmentation).
  • For more information about dataset, please check here.

1.2. training

  • target:
    • train models by SingularMonitoredSession & hooks.
    • build basic training procedure.
  • Module Architecture:
    • training_utils.py: produce hooks, creating train_op function and training function.
    • trainer_utils.py: learning rate utils, slim model utils and scaffold utils.
    • trainer.py:
      • produce basic training procedure by Trainer.
      • trainer for classification task BaseClassificationTrainer.
      • trainer for segmentation task BaseSegmentationTrainer.

1.3. evaluating

  • evaluator: evaluate given metrics with existing models on val set.

1.4. Models

  • creating reusable models for different tasks.
  • semantic segmentation:
    • fcn(fcn_8s_vgg16, fcn_8s_resnet_v2_50)
    • segnet(segnet_vgg16)
    • fc_densenet(fc_densenet)

1.5. Utils

  • initializers.py
  • regularizers.py
  • metrics_utils.py: utils to compute iou by confusion matrix.
  • variables.py: very important and useful.
  • preprocessing.py: utils for image preprocess.

2. Examples

  • target: use tensorbob tools to train/test models.
  • modules:
    • imagenet:classification models training/testing.
    • voc2012: classification & image segmentation training/testing.
    • kaggle:
      • whale: more information about this solution, please click here.
    • ade: segmentation training and predicting.
    • camvid: segmentation training and evaluating.