项目作者: saniikakulkarni
项目描述 :
Implementing Gaussian Mixture Model from scratch using python class and Expectation Maximization algorithm. It is a clustering algorithm having certain advantages over kmeans algorithm.
高级语言: Jupyter Notebook
项目地址: git://github.com/saniikakulkarni/Gaussian-Mixture-Model-from-scratch.git
Gaussian-Mixture-Model-from-scratch
Type of algorithm: Clustering algorithm
Dataset used: Iris dataset imported from sklearn
Output of final cluster
Requirements:
Jupyter notebook or Google Colab
Libraries:
Pandas: https://pandas.pydata.org/docs/getting_started/install.html
Numpy: https://numpy.org/install/
Matplotlib: https://matplotlib.org/stable/users/installing.html
sklearn: https://scikit-learn.org/stable/install.html
scipy: https://pypi.org/project/scipy/
Steps involved:
For Google Colab:
- Open google colab on any browser.
- Upload the file “Gaussian_Mixture_Model_from_scratch.ipynb” in the Google Colab.
- Run all the cells in the notebook and view the output.
- See the plots to visualize the final results.
For Jupyter Notebook:
- Run the jupyter notebook.
- Select the file “Gaussian_Mixture_Model_from_scratch.ipynb” from the location where you saved the file.
- Install the required packages mentioned above.
- Run all the cells in the notebook and view the output.
- See the plots to visualize the final results.
References:
http://www.oranlooney.com/post/ml-from-scratch-part-5-gmm/