plait.py - a fake data modeler
plait.py is a program for generating fake data from composable yaml templates.
The idea behind plait.py is that it should be easy to model fake data that
has an interesting shape. Currently, many fake data generators model their data as a
collection of
IID
variables; with plait.py we can stitch together those variables into a more
coherent model.
some example uses for plait.py are:
# a person generator
define:
min_age: 10
minor_age: 13
working_age: 18
fields:
age:
random: gauss(25, 5)
# minimum age is $min_age
finalize: max($min_age, value)
gender:
mixture:
- value: M
- value: F
name: "#{name.name}"
job:
value: "#{job.title}"
onlyif: this.age > $working_age
address:
template: address/usa.yaml
phone: # add a phone if the person is older than the minor age
template: device/phone.yaml
onlyif: this.age > ${minor_age}
# we model our height as a gaussian that varies based on
# age and gender
height:
lambda: this._base_height * this._age_factor
_base_height:
switch:
- onlyif: this.gender == "F"
random: gauss(60, 5)
- onlyif: this.gender == "M"
random: gauss(70, 5)
_age_factor:
switch:
- onlyif: this.age < 15
lambda: 1 - (20 - (this.age + 5)) / 20
- default:
value: 1
some specific examples of what plait.py can do:
# install with python
pip install plaitpy
# or with pypy
pypy-pip install plaitpy
git clone https://github.com/plaitpy/plaitpy
# get the fakerb repo
git submodule init
git submodule update
specify a template as a yaml file, then generate records from that yaml file.
# a simple example (if cloning plait.py repo)
python main.py templates/timestamp/uniform.yaml
# if plait.py is installed via pip
plait.py templates/timestamp/uniform.yaml
import plaitpy
t = plaitpy.Template("templates/timestamp/uniform.yaml")
print t.gen_record()
print t.gen_records(10)
plait.py also simplifies looking up faker fields:
# list faker namespaces
plait.py --list
# lookup faker namespaces
plait.py --lookup name
# lookup faker keys
# (-ll is short for --lookup)
plait.py --ll name.suffix
To simulate data that comes from many markov processes (a markov ecosystem),
see the plaitpy-ipc repository.
If you have ideas on features to add, open an issue - Feedback is appreciated!