项目作者: yan-roo

项目描述 :
Kaggle Competition NOAA Fisheries Steller Sea Lion Population Count
高级语言: Jupyter Notebook
项目地址: git://github.com/yan-roo/Kaggle_Sea-Lions-Counting.git
创建时间: 2019-12-23T17:32:54Z
项目社区:https://github.com/yan-roo/Kaggle_Sea-Lions-Counting

开源协议:

下载


Sea Lion Population Counting

model architecture

This is our solution on NOAA Fisheries Steller Sea Lion Population Count

Based on @outrunner - The 1st-place winner in the competition

Hardware

The following specs were used to create the solution.

  • Ubuntu 16.04 LTS
  • Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
  • 1x NVIDIA TitanXp

Installation

All requirements should be detailed in requirements.txt. Using Anaconda is strongly recommended.

  1. $ conda create -n sealions python=3.6
  2. $ source activate sealions
  3. $ pip install -r requirements.txt

Dataset Preparation

Download the data from Kaggle
or Use Kaggle Api

  1. $ kaggle competitions download -c noaa-fisheries-steller-sea-lion-population-count

Unzip with the key (kaggle2017steller)

  1. $ 7z x KaggleNOAASeaLions.7z

Crop and Divided Images into Training/Validation set

After unzip the 7z file, the data directory is structured as:

  1. Kaggle_Sea-Lions-Counting
  2. +- TrainDotted
  3. +- Train
  4. +- Test
  5. +- data_password.txt
  6. +- MismatchedTrainImages.txt
  7. +- csv
  8. +- patch-image-csv.ipynb
  9. +- submit.py
  10. +- use-keras-to-count-sea-lions.ipynb

Create new directories and use patch-image-csv to create cropped images

  1. $ mkdir 300x300
  2. $ cd 300x300/
  3. $ mkdir sea_lion
  4. $ mkdir background
  1. +- 300x300
  2. | +- sea_lion
  3. | +- background

Training

Following the Jupyter Notebook use-keras-to-count-sea-lions. And you will get your training weights in logs directory.

Make Submission use submit.py

  1. $ python submit.py

Use Kaggle API to submit result

  1. $ kaggle competitions submit -c noaa-fisheries-steller-sea-lion-population-count -f submission.csv -m "Message"