项目作者: EmbarkStudios

项目描述 :
🎨 Example-based texture synthesis written in Rust 🦀
高级语言: Rust
项目地址: git://github.com/EmbarkStudios/texture-synthesis.git
创建时间: 2019-08-26T08:06:48Z
项目社区:https://github.com/EmbarkStudios/texture-synthesis

开源协议:Other

下载




# 🎨 texture-synthesis

Embark
Embark
Crates.io
Docs
dependency status
Build Status

A light Rust API for Multiresolution Stochastic Texture Synthesis [1], a non-parametric example-based algorithm for image generation.

The repo also includes multiple code examples to get you started (along with test images), and you can find a compiled binary with a command line interface under the release tab.

Also see our talk More Like This, Please! Texture Synthesis and Remixing from a Single Example which explains this technique and the background more in-depth:

Video thumbnail

Maintenance note

We at Embark are not actively using or developing these crates and would be open to transferring them to a maintainer or maintainers that would be more active. See #166.

Features and examples

1. Single example generation

Imgur

Generate similar-looking images from a single example.

API - 01_single_example_synthesis

  1. use texture_synthesis as ts;
  2. fn main() -> Result<(), ts::Error> {
  3. //create a new session
  4. let texsynth = ts::Session::builder()
  5. //load a single example image
  6. .add_example(&"imgs/1.jpg")
  7. .build()?;
  8. //generate an image
  9. let generated = texsynth.run(None);
  10. //save the image to the disk
  11. generated.save("out/01.jpg")
  12. }

CLI

cargo run --release -- --out out/01.jpg generate imgs/1.jpg

You should get the following result with the images provided in this repo:

2. Multi example generation

Imgur

We can also provide multiple example images and the algorithm will “remix” them into a new image.

API - 02_multi_example_synthesis

  1. use texture_synthesis as ts;
  2. fn main() -> Result<(), ts::Error> {
  3. // create a new session
  4. let texsynth = ts::Session::builder()
  5. // load multiple example image
  6. .add_examples(&[
  7. &"imgs/multiexample/1.jpg",
  8. &"imgs/multiexample/2.jpg",
  9. &"imgs/multiexample/3.jpg",
  10. &"imgs/multiexample/4.jpg",
  11. ])
  12. // we can ensure all of them come with same size
  13. // that is however optional, the generator doesnt care whether all images are same sizes
  14. // however, if you have guides or other additional maps, those have to be same size(s) as corresponding example(s)
  15. .resize_input(ts::Dims {
  16. width: 300,
  17. height: 300,
  18. })
  19. // randomly initialize first 10 pixels
  20. .random_init(10)
  21. .seed(211)
  22. .build()?;
  23. // generate an image
  24. let generated = texsynth.run(None);
  25. // save the image to the disk
  26. generated.save("out/02.jpg")?;
  27. //save debug information to see "remixing" borders of different examples in map_id.jpg
  28. //different colors represent information coming from different maps
  29. generated.save_debug("out/")
  30. }

CLI

cargo run --release -- --rand-init 10 --seed 211 --in-size 300x300 -o out/02.png --debug-out-dir out generate imgs/multiexample/1.jpg imgs/multiexample/2.jpg imgs/multiexample/3.jpg imgs/multiexample/4.jpg

You should get the following result with the images provided in this repo:

3. Guided Synthesis

Imgur

We can also guide the generation by providing a transformation “FROM”-“TO” in a form of guide maps

API - 03_guided_synthesis

  1. use texture_synthesis as ts;
  2. fn main() -> Result<(), ts::Error> {
  3. let texsynth = ts::Session::builder()
  4. // NOTE: it is important that example(s) and their corresponding guides have same size(s)
  5. // you can ensure that by overwriting the input images sizes with .resize_input()
  6. .add_example(ts::Example::builder(&"imgs/2.jpg").with_guide(&"imgs/masks/2_example.jpg"))
  7. // load target "heart" shape that we would like the generated image to look like
  8. // now the generator will take our target guide into account during synthesis
  9. .load_target_guide(&"imgs/masks/2_target.jpg")
  10. .build()?;
  11. let generated = texsynth.run(None);
  12. // save the image to the disk
  13. generated.save("out/03.jpg")
  14. }

CLI

cargo run --release -- -o out/03.png generate --target-guide imgs/masks/2_target.jpg --guides imgs/masks/2_example.jpg -- imgs/2.jpg

NOTE: Note the use of -- to delimit the path to the example imgs/2.jpg, if you don’t specify --, the path
to the example will be used as another guide path and there won’t be any examples.

You should get the following result with the images provided in this repo:

4. Style Transfer

Imgur

Texture synthesis API supports auto-generation of example guide maps, which produces a style transfer-like effect.

API - 04_style_transfer

  1. use texture_synthesis as ts;
  2. fn main() -> Result<(), ts::Error> {
  3. let texsynth = ts::Session::builder()
  4. // load example which will serve as our style, note you can have more than 1!
  5. .add_examples(&[&"imgs/multiexample/4.jpg"])
  6. // load target which will be the content
  7. // with style transfer, we do not need to provide example guides
  8. // they will be auto-generated if none were provided
  9. .load_target_guide(&"imgs/tom.jpg")
  10. .guide_alpha(0.8)
  11. .build()?;
  12. // generate an image that applies 'style' to "tom.jpg"
  13. let generated = texsynth.run(None);
  14. // save the result to the disk
  15. generated.save("out/04.jpg")
  16. }

CLI

cargo run --release -- --alpha 0.8 -o out/04.png transfer-style --style imgs/multiexample/4.jpg --guide imgs/tom.jpg

You should get the following result with the images provided in this repo:

5. Inpaint

Imgur

We can also fill-in missing information with inpaint. By changing the seed, we will get different version of the ‘fillment’.

API - 05_inpaint

  1. use texture_synthesis as ts;
  2. fn main() -> Result<(), ts::Error> {
  3. let texsynth = ts::Session::builder()
  4. // let the generator know which part we would like to fill in
  5. // if we had more examples, they would be additional information
  6. // the generator could use to inpaint
  7. .inpaint_example(
  8. &"imgs/masks/3_inpaint.jpg",
  9. // load a "corrupted" example with missing red information we would like to fill in
  10. ts::Example::builder(&"imgs/3.jpg")
  11. // we would also like to prevent sampling from "corrupted" red areas
  12. // otherwise, generator will treat that those as valid areas it can copy from in the example,
  13. // we could also use SampleMethod::Ignore to ignore the example altogether, but we
  14. // would then need at least 1 other example image to actually source from
  15. // example.set_sample_method(ts::SampleMethod::Ignore);
  16. .set_sample_method(&"imgs/masks/3_inpaint.jpg"),
  17. // Inpaint requires that inputs and outputs be the same size, so it's a required
  18. // parameter that overrides both `resize_input` and `output_size`
  19. ts::Dims::square(400),
  20. )
  21. // Ignored
  22. .resize_input(ts::Dims::square(200))
  23. // Ignored
  24. .output_size(ts::Dims::square(100))
  25. .build()?;
  26. let generated = texsynth.run(None);
  27. //save the result to the disk
  28. generated.save("out/05.jpg")
  29. }

CLI

Note that the --out-size parameter determines the size for all inputs and outputs when using inpaint!

cargo run --release -- --out-size 400 --inpaint imgs/masks/3_inpaint.jpg -o out/05.png generate imgs/3.jpg

You should get the following result with the images provided in this repo:

6. Inpaint Channel

bricks

Instead of using a separate image for our inpaint mask, we can instead obtain the information from a specific
channel. In this example, the alpha channel is a circle directly in the middle of the image.

API - 06_inpaint_channel

  1. use texture_synthesis as ts;
  2. fn main() -> Result<(), ts::Error> {
  3. let texsynth = ts::Session::builder()
  4. // Let the generator know that it is using
  5. .inpaint_example_channel(
  6. ts::ChannelMask::A,
  7. &"imgs/bricks.png",
  8. ts::Dims::square(400),
  9. )
  10. .build()?;
  11. let generated = texsynth.run(None);
  12. //save the result to the disk
  13. generated.save("out/06.jpg")
  14. }

CLI

cargo run --release -- --inpaint-channel a -o out/06.png generate imgs/bricks.jpg

You should get the following result with the images provided in this repo:

7. Tiling texture

We can make the generated image tile (meaning it will not have seams if you put multiple images together side-by-side). By invoking inpaint mode together with tiling, we can make an existing image tile.

API - 07_tiling_texture

  1. use texture_synthesis as ts;
  2. fn main() -> Result<(), ts::Error> {
  3. // Let's start layering some of the "verbs" of texture synthesis
  4. // if we just run tiling_mode(true) we will generate a completely new image from scratch (try it!)
  5. // but what if we want to tile an existing image?
  6. // we can use inpaint!
  7. let texsynth = ts::Session::builder()
  8. // load a mask that specifies borders of the image we can modify to make it tiling
  9. .inpaint_example(
  10. &"imgs/masks/1_tile.jpg",
  11. ts::Example::new(&"imgs/1.jpg"),
  12. ts::Dims::square(400),
  13. )
  14. //turn on tiling mode!
  15. .tiling_mode(true)
  16. .build()?;
  17. let generated = texsynth.run(None);
  18. generated.save("out/07.jpg")
  19. }

CLI

cargo run --release -- --inpaint imgs/masks/1_tile.jpg --out-size 400 --tiling -o out/07.bmp generate imgs/1.jpg

You should get the following result with the images provided in this repo:

8. Repeat texture synthesis transform on a new image

We can re-apply the coordinate transformation performed by texture synthesis onto a new image.

API - 08_repeat_transform

  1. use texture_synthesis as ts;
  2. fn main() -> Result<(), ts::Error> {
  3. // create a new session
  4. let texsynth = ts::Session::builder()
  5. //load a single example image
  6. .add_example(&"imgs/1.jpg")
  7. .build()?;
  8. // generate an image
  9. let generated = texsynth.run(None);
  10. // now we can apply the same transformation of the generated image
  11. // onto a new image (which can be used to ensure 1-1 mapping between multiple images)
  12. // NOTE: it is important to provide same number of input images as the
  13. // otherwise, there will be coordinates mismatch
  14. let repeat_transform_img = generated
  15. .get_coordinate_transform()
  16. .apply(&["imgs/1_bw.jpg"])?;
  17. // save the image to the disk
  18. // 08 and 08_repeated images should match perfectly
  19. repeat_transform_img.save("out/08_repeated.jpg").unwrap();
  20. generated.save("out/08.jpg")
  21. }

CLI

  1. First, we need to create a transform that can be reused

The notable bit here is the --save-transform out/multi.xform which creates the
file that can be used to generate new outputs with.

cargo run --release -- --rand-init 10 --seed 211 --in-size 300x300 -o out/02.png generate --save-transform out/multi.xform imgs/multiexample/1.jpg imgs/multiexample/2.jpg imgs/multiexample/3.jpg imgs/multiexample/4.jpg

  1. Next, we use the repeat subcommand to repeat transform with different
    inputs

The important bits here are the use of the repeat subcommand instead of
generate, and --transform out/multi.xform which tells what transform to
apply to the inputs. The only restriction is that the number of images you
specify must match the original number of examples exactly. If the input
images have different dimensions than the example images, they will be
automatically resized for you.

cargo run --release -- -o out/02-repeated.png repeat --transform out/multi.xform imgs/multiexample/1.jpg imgs/multiexample/2.jpg imgs/multiexample/4.jpg imgs/multiexample/3.jpg

Also note that the normal parameters that are used with generate don’t apply
to the repeat subcommand and will be ignored.

9. Sample masks

Sample masks allow you to specify how an example image is sampled during generation.

API - 09_sample_masks

  1. use texture_synthesis as ts;
  2. fn main() -> Result<(), ts::Error> {
  3. let session = ts::Session::builder()
  4. .add_example(
  5. ts::Example::builder(&"imgs/4.png").set_sample_method(ts::SampleMethod::Ignore),
  6. )
  7. .add_example(ts::Example::builder(&"imgs/5.png").set_sample_method(ts::SampleMethod::All))
  8. .seed(211)
  9. .output_size(ts::Dims::square(200))
  10. .build()?;
  11. // generate an image
  12. let generated = session.run(None);
  13. // save the image to the disk
  14. generated.save("out/09.png")
  15. }

CLI

cargo run --release -- --seed 211 --out-size 200 --sample-masks IGNORE ALL --out 09_sample_masks.png generate imgs/4.png imgs/5.png

You should get the following result with the images provided in this repo:

10. Combining texture synthesis ‘verbs’

We can also combine multiple modes together. For example, multi-example guided synthesis:

Or chaining multiple stages of generation together:

For more use cases and examples, please refer to the presentation “More Like This, Please! Texture Synthesis and Remixing from a Single Example”

Additional CLI functionality

Some functionality is only exposed through the CLI and not built into the library.

flip-and-rotate

This subcommand takes each example and performs flip and rotation transformations to it to generate additional example inputs for generation. This subcommand doesn’t support target or example guides.

Example: cargo run --release -- -o out/output.png flip-and-rotate imgs/1.jpg

Command line binary

  • Download the binary for your OS.
  • Or Install it from source.
    • Install Rust - The minimum required version is 1.37.0
    • Clone this repo
    • In a terminal cd to the directory you cloned this repository into
    • Run cargo install --path=cli
    • Or if you wish to see the texture as it is being synthesized cargo install --path=cli --features="progress"
  • Open a terminal
  • Navigate to the directory where you downloaded the binary, if you didn’t just cargo install it
  • Run texture_synthesis --help to get a list of all of the options and commands you can run
  • Refer to the examples section in this readme for examples of running the binary

Notes

  • By default, generating output will use all of your logical cores
  • When using multiple threads for generation, the output image is not guaranteed to be deterministic with the same inputs. To have 100% determinism, you must use a thread count of one, which can by done via
    • CLI - texture-synthesis --threads 1
    • API - SessionBuilder::max_thread_count(1)

Limitations

  • Struggles with complex semantics beyond pixel color (unless you guide it)
  • Not great with regular textures (seams can become obvious)
  • Cannot infer new information from existing information (only operates on what’s already there)
  • Designed for single exemplars or very small datasets (unlike Deep Learning based approaches)

Additional Dependencies

If you’re compiling for Linux, you’ll need to have libxkbcommon development libraries installed. For ubuntu this is libxkbcommon-x11-dev.

[1] [Opara & Stachowiak] “More Like This, Please! Texture Synthesis and Remixing from a Single Example”

[2] [Harrison] Image Texture Tools

[3] [Ashikhmin] Synthesizing Natural Textures

[4] [Efros & Leung] Texture Synthesis by Non-parametric Sampling

[5] [Wey & Levoy] Fast Texture Synthesis using Tree-structured Vector Quantization

[6] [De Bonet] Multiresolution Sampling Procedure for Analysis and Synthesis of Texture Images

[7] All the test images in this repo are from Unsplash

Contributing

Contributor Covenant

We welcome community contributions to this project.

Please read our Contributor Guide for more information on how to get started.

License

Licensed under either of

at your option.

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.