SESR: Single Image Super Resolution with Recursive Squeeze and Excitation Networks
SESR: Single Image Super Resolution with Recursive Squeeze and Excitation Networks (To appear in ICPR 2018)
Trained on div2k, r=4
DataSet/Method | PSNR/SSIM |
---|---|
Set5 | 32.05/ 0.897 |
Set14 | 28.54/ 0.789 |
BSD100 | 27.51/ 0.743 |
Urban100 | 25.83/ 0.785 |
Python 2.7
Pytorch 0.2.0
opencv-python
numpy
python train.py --cuda
python test.py --cuda
python test.py --cuda --mode sr --testdir path_to_your_image
https://github.com/twtygqyy/pytorch-LapSRN
https://github.com/jiny2001/dcscn-super-resolution
https://github.com/jmiller656/EDSR-Tensorflow