项目作者: catalyst-team

项目描述 :
Accelerated deep learning R&D
高级语言: Python
项目地址: git://github.com/catalyst-team/catalyst.git
创建时间: 2018-08-20T07:56:13Z
项目社区:https://github.com/catalyst-team/catalyst

开源协议:Apache License 2.0

下载




Catalyst logo

Accelerated Deep Learning R&D

CodeFactor
Pipi version
Docs
Docker
PyPI Status

Twitter
Telegram
Slack
Github contributors

codestyle
docs
catalyst
integrations

python
python
python

os
os
os

Catalyst is a PyTorch framework for Deep Learning Research and Development.
It focuses on reproducibility, rapid experimentation, and codebase reuse
so you can create something new rather than write yet another train loop.

Break the cycle – use the Catalyst!


Catalyst at PyTorch Ecosystem Day 2021



Catalyst poster



Catalyst at PyTorch Developer Day 2021



Catalyst poster



Getting started

  1. pip install -U catalyst
  1. import os
  2. from torch import nn, optim
  3. from torch.utils.data import DataLoader
  4. from catalyst import dl, utils
  5. from catalyst.contrib.datasets import MNIST
  6. model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
  7. criterion = nn.CrossEntropyLoss()
  8. optimizer = optim.Adam(model.parameters(), lr=0.02)
  9. loaders = {
  10. "train": DataLoader(MNIST(os.getcwd(), train=True), batch_size=32),
  11. "valid": DataLoader(MNIST(os.getcwd(), train=False), batch_size=32),
  12. }
  13. runner = dl.SupervisedRunner(
  14. input_key="features", output_key="logits", target_key="targets", loss_key="loss"
  15. )
  16. # model training
  17. runner.train(
  18. model=model,
  19. criterion=criterion,
  20. optimizer=optimizer,
  21. loaders=loaders,
  22. num_epochs=1,
  23. callbacks=[
  24. dl.AccuracyCallback(input_key="logits", target_key="targets", topk=(1, 3, 5)),
  25. dl.PrecisionRecallF1SupportCallback(input_key="logits", target_key="targets"),
  26. ],
  27. logdir="./logs",
  28. valid_loader="valid",
  29. valid_metric="loss",
  30. minimize_valid_metric=True,
  31. verbose=True,
  32. )
  33. # model evaluation
  34. metrics = runner.evaluate_loader(
  35. loader=loaders["valid"],
  36. callbacks=[dl.AccuracyCallback(input_key="logits", target_key="targets", topk=(1, 3, 5))],
  37. )
  38. # model inference
  39. for prediction in runner.predict_loader(loader=loaders["valid"]):
  40. assert prediction["logits"].detach().cpu().numpy().shape[-1] == 10
  41. # model post-processing
  42. model = runner.model.cpu()
  43. batch = next(iter(loaders["valid"]))[0]
  44. utils.trace_model(model=model, batch=batch)
  45. utils.quantize_model(model=model)
  46. utils.prune_model(model=model, pruning_fn="l1_unstructured", amount=0.8)
  47. utils.onnx_export(model=model, batch=batch, file="./logs/mnist.onnx", verbose=True)

Step-by-step Guide

  1. Start with Catalyst — A PyTorch Framework for Accelerated Deep Learning R&D introduction.
  2. Try notebook tutorials or check minimal examples for first deep dive.
  3. Read blog posts with use-cases and guides.
  4. Learn machine learning with our “Deep Learning with Catalyst” course.
  5. And finally, join our slack if you want to chat with the team and contributors.

Table of Contents

Overview

Catalyst helps you implement compact
but full-featured Deep Learning pipelines with just a few lines of code.
You get a training loop with metrics, early-stopping, model checkpointing,
and other features without the boilerplate.

Installation

Generic installation:

  1. pip install -U catalyst

Specialized versions, extra requirements might apply



bash pip install catalyst[ml] # installs ML-based Catalyst pip install catalyst[cv] # installs CV-based Catalyst # master version installation pip install git+https://github.com/catalyst-team/catalyst@master --upgrade # all available extensions are listed here: # https://github.com/catalyst-team/catalyst/blob/master/setup.py


Catalyst is compatible with: Python 3.7+. PyTorch 1.4+.

Tested on Ubuntu 16.04/18.04/20.04, macOS 10.15, Windows 10, and Windows Subsystem for Linux.

Documentation

Minimal Examples


CustomRunner – PyTorch for-loop decomposition



python import os from torch import nn, optim from torch.nn import functional as F from torch.utils.data import DataLoader from catalyst import dl, metrics from catalyst.contrib.datasets import MNIST model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10)) optimizer = optim.Adam(model.parameters(), lr=0.02) train_data = MNIST(os.getcwd(), train=True) valid_data = MNIST(os.getcwd(), train=False) loaders = { "train": DataLoader(train_data, batch_size=32), "valid": DataLoader(valid_data, batch_size=32), } class CustomRunner(dl.Runner): def predict_batch(self, batch): # model inference step return self.model(batch[0].to(self.engine.device)) def on_loader_start(self, runner): super().on_loader_start(runner) self.meters = { key: metrics.AdditiveMetric(compute_on_call=False) for key in ["loss", "accuracy01", "accuracy03"] } def handle_batch(self, batch): # model train/valid step # unpack the batch x, y = batch # run model forward pass logits = self.model(x) # compute the loss loss = F.cross_entropy(logits, y) # compute the metrics accuracy01, accuracy03 = metrics.accuracy(logits, y, topk=(1, 3)) # log metrics self.batch_metrics.update( {"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03} ) for key in ["loss", "accuracy01", "accuracy03"]: self.meters[key].update(self.batch_metrics[key].item(), self.batch_size) # run model backward pass if self.is_train_loader: self.engine.backward(loss) self.optimizer.step() self.optimizer.zero_grad() def on_loader_end(self, runner): for key in ["loss", "accuracy01", "accuracy03"]: self.loader_metrics[key] = self.meters[key].compute()[0] super().on_loader_end(runner) runner = CustomRunner() # model training runner.train( model=model, optimizer=optimizer, loaders=loaders, logdir="./logs", num_epochs=5, verbose=True, valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, ) # model inference for logits in runner.predict_loader(loader=loaders["valid"]): assert logits.detach().cpu().numpy().shape[-1] == 10



ML - linear regression



python import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # data num_samples, num_features = int(1e4), int(1e1) X, y = torch.rand(num_samples, num_features), torch.rand(num_samples) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, 1) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6]) # model training runner = dl.SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, num_epochs=8, verbose=True, )



ML - multiclass classification



python import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples,) * num_classes).to(torch.int64) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy03", minimize_valid_metric=False, verbose=True, callbacks=[ dl.AccuracyCallback(input_key="logits", target_key="targets", num_classes=num_classes), # uncomment for extra metrics: # dl.PrecisionRecallF1SupportCallback( # input_key="logits", target_key="targets", num_classes=num_classes # ), # dl.AUCCallback(input_key="logits", target_key="targets"), # catalyst[ml] required ``pip install catalyst[ml]`` # dl.ConfusionMatrixCallback( # input_key="logits", target_key="targets", num_classes=num_classes # ), ], )



ML - multilabel classification



python import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples, num_classes) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy01", minimize_valid_metric=False, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.AUCCallback(input_key="scores", target_key="targets"), # uncomment for extra metrics: # dl.MultilabelAccuracyCallback(input_key="scores", target_key="targets", threshold=0.5), # dl.MultilabelPrecisionRecallF1SupportCallback( # input_key="scores", target_key="targets", threshold=0.5 # ), ] )



ML - multihead classification



python import torch from torch import nn, optim from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes1, num_classes2 = int(1e4), int(1e1), 4, 10 X = torch.rand(num_samples, num_features) y1 = (torch.rand(num_samples,) * num_classes1).to(torch.int64) y2 = (torch.rand(num_samples,) * num_classes2).to(torch.int64) # pytorch loaders dataset = TensorDataset(X, y1, y2) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} class CustomModule(nn.Module): def __init__(self, in_features: int, out_features1: int, out_features2: int): super().__init__() self.shared = nn.Linear(in_features, 128) self.head1 = nn.Linear(128, out_features1) self.head2 = nn.Linear(128, out_features2) def forward(self, x): x = self.shared(x) y1 = self.head1(x) y2 = self.head2(x) return y1, y2 # model, criterion, optimizer, scheduler model = CustomModule(num_features, num_classes1, num_classes2) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters()) scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [2]) class CustomRunner(dl.Runner): def handle_batch(self, batch): x, y1, y2 = batch y1_hat, y2_hat = self.model(x) self.batch = { "features": x, "logits1": y1_hat, "logits2": y2_hat, "targets1": y1, "targets2": y2, } # model training runner = CustomRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.CriterionCallback(metric_key="loss1", input_key="logits1", target_key="targets1"), dl.CriterionCallback(metric_key="loss2", input_key="logits2", target_key="targets2"), dl.MetricAggregationCallback(metric_key="loss", metrics=["loss1", "loss2"], mode="mean"), dl.BackwardCallback(metric_key="loss"), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.AccuracyCallback( input_key="logits1", target_key="targets1", num_classes=num_classes1, prefix="one_" ), dl.AccuracyCallback( input_key="logits2", target_key="targets2", num_classes=num_classes2, prefix="two_" ), # catalyst[ml] required ``pip install catalyst[ml]`` # dl.ConfusionMatrixCallback( # input_key="logits1", target_key="targets1", num_classes=num_classes1, prefix="one_cm" # ), # dl.ConfusionMatrixCallback( # input_key="logits2", target_key="targets2", num_classes=num_classes2, prefix="two_cm" # ), dl.CheckpointCallback( logdir="./logs/one", loader_key="valid", metric_key="one_accuracy01", minimize=False, topk=1 ), dl.CheckpointCallback( logdir="./logs/two", loader_key="valid", metric_key="two_accuracy03", minimize=False, topk=3 ), ], loggers={"console": dl.ConsoleLogger(), "tb": dl.TensorboardLogger("./logs/tb")}, )



ML – RecSys



python import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.CriterionCallback(input_key="logits", target_key="targets", metric_key="loss"), # uncomment for extra metrics: # dl.AUCCallback(input_key="scores", target_key="targets"), # dl.HitrateCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), # dl.MRRCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), # dl.MAPCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), # dl.NDCGCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), dl.BackwardCallback(metric_key="loss"), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="loss", minimize=True ), ] )



CV - MNIST classification



python import os from torch import nn, optim from torch.utils.data import DataLoader from catalyst import dl from catalyst.contrib.datasets import MNIST model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10)) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.02) train_data = MNIST(os.getcwd(), train=True) valid_data = MNIST(os.getcwd(), train=False) loaders = { "train": DataLoader(train_data, batch_size=32), "valid": DataLoader(valid_data, batch_size=32), } runner = dl.SupervisedRunner() # model training runner.train( model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, num_epochs=1, logdir="./logs", valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, verbose=True, # uncomment for extra metrics: # callbacks=[ # dl.AccuracyCallback(input_key="logits", target_key="targets", num_classes=10), # dl.PrecisionRecallF1SupportCallback( # input_key="logits", target_key="targets", num_classes=10 # ), # dl.AUCCallback(input_key="logits", target_key="targets"), # # catalyst[ml] required ``pip install catalyst[ml]`` # dl.ConfusionMatrixCallback( # input_key="logits", target_key="targets", num_classes=num_classes # ), # ] )



CV - MNIST segmentation



python import os import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.contrib.datasets import MNIST from catalyst.contrib.losses import IoULoss model = nn.Sequential( nn.Conv2d(1, 1, 3, 1, 1), nn.ReLU(), nn.Conv2d(1, 1, 3, 1, 1), nn.Sigmoid(), ) criterion = IoULoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.02) train_data = MNIST(os.getcwd(), train=True) valid_data = MNIST(os.getcwd(), train=False) loaders = { "train": DataLoader(train_data, batch_size=32), "valid": DataLoader(valid_data, batch_size=32), } class CustomRunner(dl.SupervisedRunner): def handle_batch(self, batch): x = batch[self._input_key] x_noise = (x + torch.rand_like(x)).clamp_(0, 1) x_ = self.model(x_noise) self.batch = {self._input_key: x, self._output_key: x_, self._target_key: x} runner = CustomRunner( input_key="features", output_key="scores", target_key="targets", loss_key="loss" ) # model training runner.train( model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, num_epochs=1, callbacks=[ dl.IOUCallback(input_key="scores", target_key="targets"), dl.DiceCallback(input_key="scores", target_key="targets"), dl.TrevskyCallback(input_key="scores", target_key="targets", alpha=0.2), ], logdir="./logdir", valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, verbose=True, )



CV - MNIST metric learning



python import os from torch.optim import Adam from torch.utils.data import DataLoader from catalyst import dl from catalyst.contrib.data import HardTripletsSampler from catalyst.contrib.datasets import MnistMLDataset, MnistQGDataset from catalyst.contrib.losses import TripletMarginLossWithSampler from catalyst.contrib.models import MnistSimpleNet from catalyst.data.sampler import BatchBalanceClassSampler # 1. train and valid loaders train_dataset = MnistMLDataset(root=os.getcwd()) sampler = BatchBalanceClassSampler( labels=train_dataset.get_labels(), num_classes=5, num_samples=10, num_batches=10 ) train_loader = DataLoader(dataset=train_dataset, batch_sampler=sampler) valid_dataset = MnistQGDataset(root=os.getcwd(), gallery_fraq=0.2) valid_loader = DataLoader(dataset=valid_dataset, batch_size=1024) # 2. model and optimizer model = MnistSimpleNet(out_features=16) optimizer = Adam(model.parameters(), lr=0.001) # 3. criterion with triplets sampling sampler_inbatch = HardTripletsSampler(norm_required=False) criterion = TripletMarginLossWithSampler(margin=0.5, sampler_inbatch=sampler_inbatch) # 4. training with catalyst Runner class CustomRunner(dl.SupervisedRunner): def handle_batch(self, batch) -> None: if self.is_train_loader: images, targets = batch["features"].float(), batch["targets"].long() features = self.model(images) self.batch = {"embeddings": features, "targets": targets,} else: images, targets, is_query = \ batch["features"].float(), batch["targets"].long(), batch["is_query"].bool() features = self.model(images) self.batch = {"embeddings": features, "targets": targets, "is_query": is_query} callbacks = [ dl.ControlFlowCallbackWrapper( dl.CriterionCallback(input_key="embeddings", target_key="targets", metric_key="loss"), loaders="train", ), dl.ControlFlowCallbackWrapper( dl.CMCScoreCallback( embeddings_key="embeddings", labels_key="targets", is_query_key="is_query", topk=[1], ), loaders="valid", ), dl.PeriodicLoaderCallback( valid_loader_key="valid", valid_metric_key="cmc01", minimize=False, valid=2 ), ] runner = CustomRunner(input_key="features", output_key="embeddings") runner.train( model=model, criterion=criterion, optimizer=optimizer, callbacks=callbacks, loaders={"train": train_loader, "valid": valid_loader}, verbose=False, logdir="./logs", valid_loader="valid", valid_metric="cmc01", minimize_valid_metric=False, num_epochs=10, )



CV - MNIST GAN



python import os import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.contrib.datasets import MNIST from catalyst.contrib.layers import GlobalMaxPool2d, Lambda latent_dim = 128 generator = nn.Sequential( # We want to generate 128 coefficients to reshape into a 7x7x128 map nn.Linear(128, 128 * 7 * 7), nn.LeakyReLU(0.2, inplace=True), Lambda(lambda x: x.view(x.size(0), 128, 7, 7)), nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1), nn.LeakyReLU(0.2, inplace=True), nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 1, (7, 7), padding=3), nn.Sigmoid(), ) discriminator = nn.Sequential( nn.Conv2d(1, 64, (3, 3), stride=(2, 2), padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, (3, 3), stride=(2, 2), padding=1), nn.LeakyReLU(0.2, inplace=True), GlobalMaxPool2d(), nn.Flatten(), nn.Linear(128, 1), ) model = nn.ModuleDict({"generator": generator, "discriminator": discriminator}) criterion = {"generator": nn.BCEWithLogitsLoss(), "discriminator": nn.BCEWithLogitsLoss()} optimizer = { "generator": torch.optim.Adam(generator.parameters(), lr=0.0003, betas=(0.5, 0.999)), "discriminator": torch.optim.Adam(discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999)), } train_data = MNIST(os.getcwd(), train=False) loaders = {"train": DataLoader(train_data, batch_size=32)} class CustomRunner(dl.Runner): def predict_batch(self, batch): batch_size = 1 # Sample random points in the latent space random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.engine.device) # Decode them to fake images generated_images = self.model["generator"](random_latent_vectors).detach() return generated_images def handle_batch(self, batch): real_images, _ = batch batch_size = real_images.shape[0] # Sample random points in the latent space random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.engine.device) # Decode them to fake images generated_images = self.model["generator"](random_latent_vectors).detach() # Combine them with real images combined_images = torch.cat([generated_images, real_images]) # Assemble labels discriminating real from fake images labels = \ torch.cat([torch.ones((batch_size, 1)), torch.zeros((batch_size, 1))]).to(self.engine.device) # Add random noise to the labels - important trick! labels += 0.05 * torch.rand(labels.shape).to(self.engine.device) # Discriminator forward combined_predictions = self.model["discriminator"](combined_images) # Sample random points in the latent space random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.engine.device) # Assemble labels that say "all real images" misleading_labels = torch.zeros((batch_size, 1)).to(self.engine.device) # Generator forward generated_images = self.model["generator"](random_latent_vectors) generated_predictions = self.model["discriminator"](generated_images) self.batch = { "combined_predictions": combined_predictions, "labels": labels, "generated_predictions": generated_predictions, "misleading_labels": misleading_labels, } runner = CustomRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, callbacks=[ dl.CriterionCallback( input_key="combined_predictions", target_key="labels", metric_key="loss_discriminator", criterion_key="discriminator", ), dl.BackwardCallback(metric_key="loss_discriminator"), dl.OptimizerCallback( optimizer_key="discriminator", metric_key="loss_discriminator", ), dl.CriterionCallback( input_key="generated_predictions", target_key="misleading_labels", metric_key="loss_generator", criterion_key="generator", ), dl.BackwardCallback(metric_key="loss_generator"), dl.OptimizerCallback( optimizer_key="generator", metric_key="loss_generator", ), ], valid_loader="train", valid_metric="loss_generator", minimize_valid_metric=True, num_epochs=20, verbose=True, logdir="./logs_gan", ) # visualization (matplotlib required): # import matplotlib.pyplot as plt # %matplotlib inline # plt.imshow(runner.predict_batch(None)[0, 0].cpu().numpy())



CV - MNIST VAE



python import os import torch from torch import nn, optim from torch.nn import functional as F from torch.utils.data import DataLoader from catalyst import dl, metrics from catalyst.contrib.datasets import MNIST LOG_SCALE_MAX = 2 LOG_SCALE_MIN = -10 def normal_sample(loc, log_scale): scale = torch.exp(0.5 * log_scale) return loc + scale * torch.randn_like(scale) class VAE(nn.Module): def __init__(self, in_features, hid_features): super().__init__() self.hid_features = hid_features self.encoder = nn.Linear(in_features, hid_features * 2) self.decoder = nn.Sequential(nn.Linear(hid_features, in_features), nn.Sigmoid()) def forward(self, x, deterministic=False): z = self.encoder(x) bs, z_dim = z.shape loc, log_scale = z[:, : z_dim // 2], z[:, z_dim // 2 :] log_scale = torch.clamp(log_scale, LOG_SCALE_MIN, LOG_SCALE_MAX) z_ = loc if deterministic else normal_sample(loc, log_scale) z_ = z_.view(bs, -1) x_ = self.decoder(z_) return x_, loc, log_scale class CustomRunner(dl.IRunner): def __init__(self, hid_features, logdir, engine): super().__init__() self.hid_features = hid_features self._logdir = logdir self._engine = engine def get_engine(self): return self._engine def get_loggers(self): return { "console": dl.ConsoleLogger(), "csv": dl.CSVLogger(logdir=self._logdir), "tensorboard": dl.TensorboardLogger(logdir=self._logdir), } @property def num_epochs(self) -> int: return 1 def get_loaders(self): loaders = { "train": DataLoader(MNIST(os.getcwd(), train=False), batch_size=32), "valid": DataLoader(MNIST(os.getcwd(), train=False), batch_size=32), } return loaders def get_model(self): model = self.model if self.model is not None else VAE(28 * 28, self.hid_features) return model def get_optimizer(self, model): return optim.Adam(model.parameters(), lr=0.02) def get_callbacks(self): return { "backward": dl.BackwardCallback(metric_key="loss"), "optimizer": dl.OptimizerCallback(metric_key="loss"), "checkpoint": dl.CheckpointCallback( self._logdir, loader_key="valid", metric_key="loss", minimize=True, topk=3, ), } def on_loader_start(self, runner): super().on_loader_start(runner) self.meters = { key: metrics.AdditiveMetric(compute_on_call=False) for key in ["loss_ae", "loss_kld", "loss"] } def handle_batch(self, batch): x, _ = batch x = x.view(x.size(0), -1) x_, loc, log_scale = self.model(x, deterministic=not self.is_train_loader) loss_ae = F.mse_loss(x_, x) loss_kld = ( -0.5 * torch.sum(1 + log_scale - loc.pow(2) - log_scale.exp(), dim=1) ).mean() loss = loss_ae + loss_kld * 0.01 self.batch_metrics = {"loss_ae": loss_ae, "loss_kld": loss_kld, "loss": loss} for key in ["loss_ae", "loss_kld", "loss"]: self.meters[key].update(self.batch_metrics[key].item(), self.batch_size) def on_loader_end(self, runner): for key in ["loss_ae", "loss_kld", "loss"]: self.loader_metrics[key] = self.meters[key].compute()[0] super().on_loader_end(runner) def predict_batch(self, batch): random_latent_vectors = torch.randn(1, self.hid_features).to(self.engine.device) generated_images = self.model.decoder(random_latent_vectors).detach() return generated_images runner = CustomRunner(128, "./logs", dl.CPUEngine()) runner.run() # visualization (matplotlib required): # import matplotlib.pyplot as plt # %matplotlib inline # plt.imshow(runner.predict_batch(None)[0].cpu().numpy().reshape(28, 28))



AutoML - hyperparameters optimization with Optuna



python import os import optuna import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.contrib.datasets import MNIST def objective(trial): lr = trial.suggest_loguniform("lr", 1e-3, 1e-1) num_hidden = int(trial.suggest_loguniform("num_hidden", 32, 128)) train_data = MNIST(os.getcwd(), train=True) valid_data = MNIST(os.getcwd(), train=False) loaders = { "train": DataLoader(train_data, batch_size=32), "valid": DataLoader(valid_data, batch_size=32), } model = nn.Sequential( nn.Flatten(), nn.Linear(784, num_hidden), nn.ReLU(), nn.Linear(num_hidden, 10) ) optimizer = torch.optim.Adam(model.parameters(), lr=lr) criterion = nn.CrossEntropyLoss() runner = dl.SupervisedRunner(input_key="features", output_key="logits", target_key="targets") runner.train( model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, callbacks={ "accuracy": dl.AccuracyCallback( input_key="logits", target_key="targets", num_classes=10 ), # catalyst[optuna] required ``pip install catalyst[optuna]`` "optuna": dl.OptunaPruningCallback( loader_key="valid", metric_key="accuracy01", minimize=False, trial=trial ), }, num_epochs=3, ) score = trial.best_score return score study = optuna.create_study( direction="maximize", pruner=optuna.pruners.MedianPruner( n_startup_trials=1, n_warmup_steps=0, interval_steps=1 ), ) study.optimize(objective, n_trials=3, timeout=300) print(study.best_value, study.best_params)



Config API - minimal example



yaml title="example.yaml" runner: _target_: catalyst.runners.SupervisedRunner model: _var_: model _target_: torch.nn.Sequential args: - _target_: torch.nn.Flatten - _target_: torch.nn.Linear in_features: 784 # 28 * 28 out_features: 10 input_key: features output_key: &output_key logits target_key: &target_key targets loss_key: &loss_key loss run: # ≈ stage 1 - _call_: train # runner.train(...) criterion: _target_: torch.nn.CrossEntropyLoss optimizer: _target_: torch.optim.Adam params: # model.parameters() _var_: model.parameters lr: 0.02 loaders: train: _target_: torch.utils.data.DataLoader dataset: _target_: catalyst.contrib.datasets.MNIST root: data train: y batch_size: 32 &valid_loader_key valid: &valid_loader _target_: torch.utils.data.DataLoader dataset: _target_: catalyst.contrib.datasets.MNIST root: data train: n batch_size: 32 callbacks: - &accuracy_metric _target_: catalyst.callbacks.AccuracyCallback input_key: *output_key target_key: *target_key topk: [1,3,5] - _target_: catalyst.callbacks.PrecisionRecallF1SupportCallback input_key: *output_key target_key: *target_key num_epochs: 1 logdir: logs valid_loader: *valid_loader_key valid_metric: *loss_key minimize_valid_metric: y verbose: y # ≈ stage 2 - _call_: evaluate_loader # runner.evaluate_loader(...) loader: *valid_loader callbacks: - *accuracy_metric

sh catalyst-run --config example.yaml


Tests

All Catalyst code, features, and pipelines are fully tested.
We also have our own catalyst-codestyle and a corresponding pre-commit hook.
During testing, we train a variety of different models: image classification,
image segmentation, text classification, GANs, and much more.
We then compare their convergence metrics in order to verify
the correctness of the training procedure and its reproducibility.
As a result, Catalyst provides fully tested and reproducible
best practices for your deep learning research and development.

Blog Posts

Talks

Community

Accelerated with Catalyst


Research Papers



- Hierarchical Attention for Sentiment Classification with Visualization
- Pediatric Bone Age Assessment
- Implementation of the paper “Tell Me Where to Look: Guided Attention Inference Network”
- Implementation of the paper “Filter Response Normalization Layer: Eliminating Batch Dependence in the Training of Deep Neural Networks”
- Implementation of the paper “Utterance-level Aggregation For Speaker Recognition In The Wild”
- Implementation of the paper “Looking to Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech Separation”
- Implementation of the paper “ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks”



Blog Posts



- Solving the Cocktail Party Problem using PyTorch
- Beyond fashion: Deep Learning with Catalyst (Config API)
- Tutorial from Notebook API to Config API (RU)



Competitions



- Kaggle Quick, Draw! Doodle Recognition Challenge - 11th place
- Catalyst.RL - NeurIPS 2018: AI for Prosthetics Challenge – 3rd place
- Kaggle Google Landmark 2019 - 30th place
- iMet Collection 2019 - FGVC6 - 24th place
- ID R&D Anti-spoofing Challenge - 14th place
- NeurIPS 2019: Recursion Cellular Image Classification - 4th place
- MICCAI 2019: Automatic Structure Segmentation for Radiotherapy Planning Challenge 2019
3rd place solution for Task 3: Organ-at-risk segmentation from chest CT scans and 4th place solution for Task 4: Gross Target Volume segmentation of lung cancer
- Kaggle Seversteal steel detection - 5th place
- RSNA Intracranial Hemorrhage Detection - 5th place
- APTOS 2019 Blindness Detection – 7th place
- Catalyst.RL - NeurIPS 2019: Learn to Move - Walk Around – 2nd place
- xView2 Damage Assessment Challenge - 3rd place




Toolkits



- Catalyst.RL – A Distributed Framework for Reproducible RL Research by Scitator
- Catalyst.Classification - Comprehensive classification pipeline with Pseudo-Labeling by Bagxi and Pdanilov
- Catalyst.Segmentation - Segmentation pipelines - binary, semantic and instance, by Bagxi
- Catalyst.Detection - Anchor-free detection pipeline by Avi2011class and TezRomacH
- Catalyst.GAN - Reproducible GANs pipelines by Asmekal
- Catalyst.Neuro - Brain image analysis project, in collaboration with TReNDS Center
- MLComp – Distributed DAG framework for machine learning with UI by Lightforever
- Pytorch toolbelt - PyTorch extensions for fast R&D prototyping and Kaggle farming by BloodAxe
- Helper functions - An assorted collection of helper functions by Ternaus
- BERT Distillation with Catalyst by elephantmipt



Other



- CamVid Segmentation Example - Example of semantic segmentation for CamVid dataset
- Notebook API tutorial for segmentation in Understanding Clouds from Satellite Images Competition
- Catalyst.RL - NeurIPS 2019: Learn to Move - Walk Around – starter kit
- Catalyst.RL - NeurIPS 2019: Animal-AI Olympics - starter kit
- Inria Segmentation Example - An example of training segmentation model for Inria Sattelite Segmentation Challenge
- iglovikov_segmentation - Semantic segmentation pipeline using Catalyst
- Logging Catalyst Runs to Comet - An example of how to log metrics, hyperparameters and more from Catalyst runs to Comet


See other projects at the GitHub dependency graph.

If your project implements a paper,
a notable use-case/tutorial, or a Kaggle competition solution, or
if your code simply presents interesting results and uses Catalyst,
we would be happy to add your project to the list above!
Do not hesitate to send us a PR with a brief description of the project similar to the above.

Contribution Guide

We appreciate all contributions.
If you are planning to contribute back bug-fixes, there is no need to run that by us; just send a PR.
If you plan to contribute new features, new utility functions, or extensions,
please open an issue first and discuss it with us.

User Feedback

We’ve created feedback@catalyst-team.com as an additional channel for user feedback.

  • If you like the project and want to thank us, this is the right place.
  • If you would like to start a collaboration between your team and Catalyst team to improve Deep Learning R&D, you are always welcome.
  • If you don’t like Github Issues and prefer email, feel free to email us.
  • Finally, if you do not like something, please, share it with us, and we can see how to improve it.

We appreciate any type of feedback. Thank you!

Acknowledgments

Since the beginning of the Сatalyst development, a lot of people have influenced it in a lot of different ways.

Catalyst.Team

Catalyst.Contributors

Trusted by

Citation

Please use this bibtex if you want to cite this repository in your publications:

  1. @misc{catalyst,
  2. author = {Kolesnikov, Sergey},
  3. title = {Catalyst - Accelerated deep learning R&D},
  4. year = {2018},
  5. publisher = {GitHub},
  6. journal = {GitHub repository},
  7. howpublished = {\url{https://github.com/catalyst-team/catalyst}},
  8. }