Location Privacy Meter: A tool to model human mobility and quantify location privacy
This tool quantifies location privacy, for various location-based applications and location-privacy preserving mechanisms (LPPMs). It quantifies location privacy in an adversarial framework, based on the inference error of the attacker. It enables constructing the background knowledge of the adversary, as the mobility model of users, and evaluates the risks of various inference attacks, notably identification and reconstruction attacks. The tool is designed based on the formal framework proposed in the following papers:
The tool is designed and developed by Vincent Bindschaedler and Reza Shokri.
Please read the Quick Starte Guide for learning how to use the library.