项目作者: cy69855522

项目描述 :
A Pytorch Implementation of “Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN”
高级语言: Python
项目地址: git://github.com/cy69855522/Geo-CNN-Pytorch-PYG.git
创建时间: 2020-06-04T18:53:05Z
项目社区:https://github.com/cy69855522/Geo-CNN-Pytorch-PYG

开源协议:

下载


🏔 Geo-CNN-Pytorch-PYG

A Pytorch re-implementation of “Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN”

  • This repository is a reproduction of the GeoCNN, which can support multiple GPUs.
  • My enviroment:
    • Ubuntu 18.04
    • Anaconda Python 3.7
    • Pytorch 1.5.0
    • PYG 1.5.0
    • Cuda 10.2
    • Cudnn 7.6.5
    • GPU Memory >= 8G
  • If you like graph neural network, too. Welcome to our 🐧 QQ group: 832405795

Accuracy on ModelNet40

this implementation original paper
93.2 93.4

How to Use This Code

  • Prepare Data
    • Download ModelNet40 data set
    • Move modelnet40_normal_resampled.zip into data/ModelNet40_10000
    • Unzip modelnet40_normal_resampled.zip
    • Rename modelnet40_normal_resampled to raw
  • Train
    • We can change args in the Configuration part of the code if you want
    • Then let’s start training: python geocnn.py
  • Test
    • Uncomment this line and replace the weight path
    • Set only_test as True
    • Then let’s start testing: python geocnn.py

Bibtex

  1. @article{DBLP:journals/corr/abs-1811-07782,
  2. author = {Shiyi Lan and
  3. Ruichi Yu and
  4. Gang Yu and
  5. Larry S. Davis},
  6. title = {Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN},
  7. journal = {CoRR},
  8. volume = {abs/1811.07782},
  9. year = {2018},
  10. url = {http://arxiv.org/abs/1811.07782},
  11. archivePrefix = {arXiv},
  12. eprint = {1811.07782},
  13. timestamp = {Mon, 26 Nov 2018 12:52:45 +0100},
  14. biburl = {https://dblp.org/rec/bib/journals/corr/abs-1811-07782},
  15. bibsource = {dblp computer science bibliography, https://dblp.org}
  16. }