项目作者: ishugaepov

项目描述 :
Materials for "Machine Learning on Big Data" course
高级语言: Jupyter Notebook
项目地址: git://github.com/ishugaepov/MLBD.git
创建时间: 2020-01-01T10:12:05Z
项目社区:https://github.com/ishugaepov/MLBD

开源协议:

下载


Apache Hadoop YARN- Yet Another Resource Negotiator_1649309709737.pdf
High Performance Spark_1649309710017.pdf
Resilient Distributed Datasets- A Fault-Tolerant Abstraction for In-Memory Cluster Computing_1649309710373.pdf
Spark- Cluster Computing with Working Sets_1649309710663.pdf
spark_1649309710803.pdf
Controlled experiments on the web- survey and practical guide_1649309711024.pdf
Evaluating the Replicability of Significance Tests for Comparing Learning Algorithms_1649309711079.pdf
Online Controlled Experiments and A:B Testing_1649309711170.pdf
Online Controlled Experiments at Large Scale_1649309711270.pdf
Overlapping Experiment Infrastructure- More, Better, Faster Experimentation_1649309711346.pdf
Statistical Comparisons of Classifiers over Multiple Data Sets_1649309711395.pdf
A Survey on Distributed Machine Learning_1649309711475.pdf
Horovod- fast and easy distributed deep learning in TensorFlow_1649309711571.pdf
Large Scale Distributed Deep Networks_1649309711694.pdf
Large-Scale Machine Learning with Stochastic Gradient Descent_1649309711750.pdf
MLlib- Machine Learning in Apache Spark_1649309711794.pdf
Map-Reduce for Machine Learning on Multicore_1649309711840.pdf
Parallelized Stochastic Gradient Descent_1649309711917.pdf
Scaling Distributed Machine Learning with the Parameter Server_1649309712146.pdf
SparkNet- Training Deep Networks in Spark_1649309712272.pdf
TensorFlow- A System for Large-Scale Machine Learning_1649309712395.pdf
TensorFlow- Large-Scale Machine Learning on Heterogeneous Distributed Systems_1649309712491.pdf
The Tradeoffs of Large Scale Learning_1649309712602.pdf
distributed_ml_intro_1649309712709.pdf
A Survey of Model Compression and Acceleration for Deep Neural Networks_1649309712816.pdf
Deep Compression_1649309712849.pdf
DeepGBM_1649309713001.pdf
Distilling the Knowledge in a Neural Network_1649309713028.pdf
Learning both Weights and Connections for Efficient Neural Networks_1649309713070.pdf
The Lottery Ticket Hypothesis_1649309713209.pdf
dnn_compression_1649309713351.pdf
A Unified Approach to Interpreting Model Predictions_1649309713656.pdf
CatBoost- gradient boosting with categorical features support_1649309713699.pdf
Greedy Function Approximation- A Gradient Boosting Machine_1649309713806.pdf
PLANET- Massively Parallel Learning of Tree Ensembles with MapReduce_1649309713905.pdf
Practical Lessons from Predicting Clicks on Ads at Facebook_1649309714015.pdf
Stochastic Gradient Boosting_1649309714181.pdf
XGBoost- A Scalable Tree Boosting System_1649309714228.pdf
mean_target_encoding_1649309714326.pdf
test_categorical_features_1649309714404.pdf
Hive - A Warehousing Solution Over a Map-Reduce Framework_1649309714457.pdf
Map-Reduce for Machine Learning on Multicore_1649309714542.pdf
MapReduce- Simplified Data Processing on Large Clusters_1649309714631.pdf
The Google File System_1649309714742.pdf
The Hadoop Distributed File System_1649309714884.pdf
gfs_1649309714979.pdf
map_reduce_1649309715017.pdf
A Tutorial on Bayesian Optimization_1649309715217.pdf
AML_1649309715555.pdf
Algorithms for Hyper-Parameter Optimization_1649309715839.pdf
Gaussian Processes in Machine Learning_1649309715903.pdf
Google Vizier- A Service for Black-Box Optimization_1649309715983.pdf
Multi-Task Bayesian Optimization_1649309716107.pdf
Random Search for Hyper-Parameter Optimization_1649309716210.pdf
Speeding up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves_1649309716359.pdf
hyperopt_1649309716441.pdf
intro_1649309716488.pdf
Annoy_1649309716637.pdf
Approximate Nearest Neighbor Search on High Dimensional Data_1649309716778.pdf
Approximate nearest neighbor algorithm based on navigable (Information Systems)_1649309716811.pdf
Deep Hashing for Compact Binary Codes Learning_1649309716827.pdf
Deep Supervised Hashing for Fast Image Retrieval _1649309716851.pdf
Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs_1649309716934.pdf
Hashing for Similarity Search: A Survey_1649309716991.pdf
Mining Massive Datasets - Chapter 3_1649309717075.pdf
Survey of Nearest Neighbor Techniques_1649309717093.pdf
nearest_neighbor_search_1649309717116.pdf
CB2CF- A Neural Multiview Content-to-Collaborative Filtering Model for Completely Cold Item Recommendations_1649309717337.pdf
Collaborative Filtering for Implicit Feedback Datasets_1649309717475.pdf
Fast Matrix Factorization for Online Recommendation with Implicit Feedback_1649309717526.pdf
Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent_1649309717556.pdf
Neural Collaborative Filtering_1649309717615.pdf
Probabilistic Matrix Factorization_1649309717653.pdf
PyTorch BigGraph_1649309717730.pdf
deep-content-based-music-recommendation_1649309717824.pdf
recsys_1649309717881.pdf
A Sparse Deep Factorization Machine for Efficient CTR prediction_1649309718008.pdf
Deep & Cross Network for Ad Click Predictions_1649309718052.pdf
DeepFM_1649309718095.pdf
FFM in a Real-world Online Advertising System 2_1649309718230.pdf
Factorization Machines_1649309718288.pdf
[AFM] Attentional Factorization Machines - Learning the Weight of Feature Interactions via Attention Networks (ZJU 2017)_1649309718464.pdf
[Deep Crossing] Deep Crossing - Web-Scale Modeling without Manually Crafted Combinatorial Features (Microsoft 2016)_1649309718606.pdf
[FFM] Field-aware Factorization Machines for CTR Prediction (Criteo 2016)_1649309718627.pdf
categorical_features_1649309718657.pdf
Spark SQL- Relational Data Processing in Spark_1649309718830.pdf
spark_sql_1649309718969.pdf