项目作者: n60512

项目描述 :
Building a machine reading comprehension system using pretrained model bert.
高级语言: Python
项目地址: git://github.com/n60512/BERT-QA.git
创建时间: 2020-08-25T02:43:45Z
项目社区:https://github.com/n60512/BERT-QA

开源协议:

下载


BERT-QA

Building a machine reading comprehension system using pretrained model bert.

Quick Start

1. Prepare your training data and install the package in requirement.txt

2. Fine-tune BERT model

  1. sh tarin.sh

3. Interaction

  1. sh interaction.sh

Experiment

Input context format like below:

  1. { "sentence":"YOUR_SENTENCE。", "question":"YOUR_QUESTION"}

The experimental result of F1-measure:

  1. Evaluation 100%|███████████████████████████████████| 495/495 [00:05<00:00, 91.41it/s]
  2. Average f1 : 0.5596300989105781

Display Result

res1

res2

Model architectures

BERT (from Google) released with the paper BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.

Dataset

In this experiments, we use the datasets from DRCKnowledgeTeam. (https://github.com/DRCKnowledgeTeam/DRCD)