项目作者: mmkamani7

项目描述 :
Implementation of Redundancy Infused SGD for faster distributed SGD.
高级语言: Python
项目地址: git://github.com/mmkamani7/RI-SGD.git
创建时间: 2019-04-01T17:03:50Z
项目社区:https://github.com/mmkamani7/RI-SGD

开源协议:MIT License

下载


Redundancy-Infused SGD for Distributed Optimization of Deep Learning Models

This is a preliminary implementation of the ICML 2019 paper:

Haddadpour, F., Kamani, M.M., Mahdavi, M., & Cadambe, V.
“Trading Redundancy for Communication: Speeding up Distributed SGD for Non-convex Optimization.”
International Conference on Machine Learning. 2019.

Instruction

You can download each dataset using:

  1. python generate_cifar_tfrecords.py --data-dir=./cifar10 --dataset cifar10

Then you can run RI-SGD using this script:

  1. python main.py --data-dir=./cifar10 \
  2. --num-gpus=8 \
  3. --train-steps=45000 \
  4. --variable-strategy GPU \
  5. --job-dir=./log/ri-sgd/cifar10-ri-redun25-step50 \
  6. --run-type multi \
  7. --redundancy=0.25 \
  8. --sync-step=50 \
  9. --dataset cifar10 \
  10. --eval-batch-size=128
  1. python main.py --data-dir=./cifar10 \
  2. --num-gpus=8 \
  3. --train-steps=45000 \
  4. --variable-strategy GPU \
  5. --job-dir=./log/ri-sgd/cifar10-ri-sync \
  6. --run-type sync \
  7. --redundancy=0.0 \
  8. --dataset cifar10 \
  9. --eval-batch-size=128

where redundancy is equal to $\mu$ in paper and sync-step is equal to $\tau$ in paper.

Citation

  1. @inproceedings{haddadpour2019trading,
  2. title={Trading Redundancy for Communication: Speeding up Distributed SGD for Non-convex Optimization},
  3. author={Haddadpour, Farzin and Kamani, Mohammad Mahdi and Mahdavi, Mehrdad and Cadambe, Viveck},
  4. booktitle={International Conference on Machine Learning},
  5. pages={2545--2554},
  6. year={2019}
  7. }