项目作者: jgoodman8

项目描述 :
Image feature selection performed by using white and black box algorithms
高级语言: Jupyter Notebook
项目地址: git://github.com/jgoodman8/py-image-features-extractor.git
创建时间: 2018-08-03T17:57:00Z
项目社区:https://github.com/jgoodman8/py-image-features-extractor

开源协议:

下载


Py Image Feature Extractor

Index

  1. Overview
  2. Requirements
  3. Installation
  4. Tests
  5. Run

Overview" class="reference-link">Overview

This package provides implementations of different methods to perform image feature extraction. These methods are
though a Python package and a command line interface. Available feature extraction methods are:

  • Convolutional Neural Networks
    • VGG-19
    • ResNet-50
    • DenseNet-50
    • Custom CNN through .h5 file
  • Linear Binary Patterns Histograms (LBPH)
  • Bag of Features (bag-of-visual-words)
    • SIFT
    • SURF
    • KAZE

At the notebooks folder, some proofs-of-concept related to feature extraction and image classification may be found.

Requirements" class="reference-link">Requirements

System requirements:

  • python >= 3.7.3
  • pip >= 19.1.1

All the package requirements are listed on the install_requires property within the setup.py.

Installation" class="reference-link">Installation

This project may be installed as a python package using:

  1. pip install .

Or using the PyPI package.

Tests" class="reference-link">Tests

All the test suite has been developed using the pytest framework.

  1. # All tests
  2. pytest
  3. # Unit tests of extractors module
  4. pytest image_feature_extractor/tests/extractors
  5. # Unit tests of models module
  6. pytest image_feature_extractor/tests/models
  7. # Validation tests
  8. pytest image_feature_extractor/tests/validation

Run" class="reference-link">Run

Model

The package has a command-line entry point configured. This entry point is built using the library
Click. To get all the possible commands, use image_feature_extractor --help.

  1. # Example to perform feature extraction using a pre-trained VGG-19
  2. image_feature_extractor extract --deep --src imgs/train --dst vgg19_train.csv --cnn vgg19 --size 200
  3. # Example to perform feature extraction using LBPs
  4. image_feature_extractor extract --lbp --src imgs/train --dst vgg19_train.csv --detector kaze vgg19 --k 100 --size 200 --export --vocabulary-route vocabulary.npy
  5. # Example to perform feature extraction using bag-of-features with KAZE keypoint detector
  6. image_feature_extractor extract --bow --src imgs/train --dst vgg19_train.csv --points 8 --radius 1 --grid 8 --size 200