项目作者: himoto

项目描述 :
Julia interface to BioMASS, tailored to parameter estimation in systems biology models
高级语言: Julia
项目地址: git://github.com/himoto/BioMASS.jl.git
创建时间: 2020-10-30T05:53:03Z
项目社区:https://github.com/himoto/BioMASS.jl

开源协议:MIT License

下载


The BioMASS module for Julia

Stable
Dev
Actions Status
License: MIT
Cancers Paper

This module provides a Julia interface to the BioMASS parameter estimation.

Installation

The package is a registered package, and can be installed with Pkg.add.

  1. julia> using Pkg; Pkg.add("BioMASS")

or through the pkg REPL mode by typing

  1. ] add BioMASS

Python package requirements:

Example

Model development

This example shows you how to build a simple Michaelis-Menten two-step enzyme catalysis model.

E + S ⇄ ES → E + P

pasmopy.Text2Model allows you to build a BioMASS model from text. You simply describe biochemical reactions and the molecular mechanisms extracted from text are converted into an executable model.

Prepare a text file describing the biochemical reactions (e.g., michaelis_menten.txt)

  1. E + S ES | kf=0.003, kr=0.001 | E=100, S=50
  2. ES E + P | kf=0.002
  3. @obs Substrate: u[S]
  4. @obs E_free: u[E]
  5. @obs E_total: u[E] + u[ES]
  6. @obs Product: u[P]
  7. @obs Complex: u[ES]
  8. @sim tspan: [0, 100]

Convert the text into an executable model

  1. $ python # pasmopy requires Python 3.7+
  1. >>> from pasmopy import Text2Model
  2. >>> description = Text2Model("michaelis_menten.txt", lang="julia")
  3. >>> description.convert() # generate 'michaelis_menten_jl/'

Simulate the model using BioMASS.jl

  1. $ julia
  1. using BioMASS
  2. model = Model("./michaelis_menten_jl");
  3. run_simulation(model)

michaelis_menten

Parameter estimation

  1. using BioMASS
  2. model = Model("./examples/fos_model");
  3. # Estimate unknown model parameters from experimental observations
  4. scipy_differential_evolution(model, 1) # requires scipy package
  5. # Save simulation results to figure/ in the model folder
  6. run_simulation(model, viz_type="best", show_all=true)

estimated_parameter_sets

References

  • Imoto, H., Zhang, S. & Okada, M. A Computational Framework for Prediction and Analysis of Cancer Signaling Dynamics from RNA Sequencing Data—Application to the ErbB Receptor Signaling Pathway. Cancers 12, 2878 (2020). https://doi.org/10.3390/cancers12102878

  • Imoto, H., Yamashiro, S. & Okada, M. A text-based computational framework for patient -specific modeling for classification of cancers. iScience 25, 103944 (2022). https://doi.org/10.1016/j.isci.2022.103944

License

MIT