项目作者: oopDaniel

项目描述 :
Comparison of classification result based on dimension reduction algorithms: PCA vs LDA
高级语言: Python
项目地址: git://github.com/oopDaniel/COEN240-PCA-vs-LDA.git
创建时间: 2019-05-20T02:43:03Z
项目社区:https://github.com/oopDaniel/COEN240-PCA-vs-LDA

开源协议:

下载


Classification based on dimension reduction algorithms: PCA vs LDA

  • Compare Principal Component Analysis (PCA) with Linear Discriminant Analysis (LDA) / Fisher Linear Discriminant (FLD).
  • Use both algorithms to reduce image features into d dimension and classify different people with the reduced facial features.
  • The result shows that LDA works better than PCA in smaller dimensions.
  • Plot the accuracy rate vs reduced dimension d.

Demo

Dimension d = [1, 2, 3, 6, 9]

Dimension d = [1, 2, 3, 6, 10, 20, 30]

Get started

First time

  1. make all

After first time

  1. make start

Dependency:

  • Python 3+
  • numpy
  • sklearn
  • opencv-python
  • matplotlib