The project is used to do preprocessing on brain MR images.
Tested on x86/64 Linux-based system.
The project is used to do preprocessing on brain MR images (.nii
files).
There is a pipeline include those features:
K-means
to split GM, WM and CSF)nilearn
)All the features implemented as nipype
‘s interface are connected in a workflow.
In this repo, the dataset is downloaded from LONI Image Data Archive (IDA).
Collect and download AD and NC screening sample of ADNI1 and ADNI2, and extract them into this folder.
You can just place the .nii
samples in ./data
.
If you only have DICOM files, you can use DICOM to NIfTI Online Converter to convert them into NIfTI format.
For example, folder ./data
structure is like this:
./data
├── 099_S_4206.nii
└── 099_S_4205.nii
0 directories, 2 files
docker build --tag neuro:latest --file Dockerfile.neuro .
We need to install custom tools in the Docker image.
docker build --tag neuro_custom:latest --file Dockerfile .
docker run --rm -it \
--workdir /src \
--volume ./src:/src \
--volume ./utils:/utils \
--volume ./data:/data \
--volume ./output:/output \
--name neuro_workflow \
neuro_custom python workflow.py
Segmentation results are shown as cover.
When the workflow ran successfully, all the results of each step will be saved in ./output
.
And the workflow graph will be saved in ./src/graph_detailed.png
.
The useful Automatic Registration Toolbox
we used are listed below:
They are downloaded from NITRC and put in ./utils
.
Install neurodocker
pip install neurodocker
Generate Dockerfile using neurodocker
neurodocker generate docker \
--pkg-manager apt \
--base-image neurodebian:bullseye \
--fsl version=6.0.5.1 \
--ants version=2.4.1 \
--miniconda version=latest conda_install="nipype" \
> Dockerfile.neuro
Build the docker image with the generated Dockerfile
docker build --tag neuro:latest --file Dockerfile.neuro .
Nat Lee |