项目作者: khoih-prog

项目描述 :
This library enables you to use Interrupt from Hardware Timers on an SAMD-based board. These nRF52 Hardware Timers, using Interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's mandatory if you need to measure some data requiring better accuracy. It now supports 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers' interval is very long (ulong millisecs). The most important feature is they're ISR-based Timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks.
高级语言: C++
项目地址: git://github.com/khoih-prog/NRF52_TimerInterrupt.git
创建时间: 2020-11-03T04:38:34Z
项目社区:https://github.com/khoih-prog/NRF52_TimerInterrupt

开源协议:MIT License

下载


NRF52_TimerInterrupt Library

arduino-library-badge
GitHub release
GitHub
contributions welcome
GitHub issues

Donate to my libraries using BuyMeACoffee

—-

Table of Contents

—-

Important Change from v1.4.0

Please have a look at HOWTO Fix Multiple Definitions Linker Error

Why do we need this NRF52_TimerInterrupt library

Features

This library enables you to use Interrupt from Hardware Timers on an nRF52-based board, such as AdaFruit Itsy-Bitsy nRF52840, Feather nRF52840 Express, etc.

As Hardware Timers are rare, and very precious assets of any board, this library now enables you to use up to 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers’ interval is very long (ulong millisecs).

Now with these new 16 ISR-based timers, the maximum interval is practically unlimited (limited only by unsigned long milliseconds) while the accuracy is nearly perfect compared to software timers.

The most important feature is they’re ISR-based timers. Therefore, their executions are not blocked by bad-behaving functions / tasks. This important feature is absolutely necessary for mission-critical tasks.

The ISR_Timer_Complex example will demonstrate the nearly perfect accuracy compared to software timers by printing the actual elapsed millisecs of each type of timers.

Being ISR-based timers, their executions are not blocked by bad-behaving functions / tasks, such as connecting to WiFi, Internet and Blynk services. You can also have many (up to 16) timers to use.

This non-being-blocked important feature is absolutely necessary for mission-critical tasks.

You’ll see blynkTimer Software is blocked while system is connecting to WiFi / Internet / Blynk, as well as by blocking task
in loop(), using delay() function as an example. The elapsed time then is very unaccurate

Why using ISR-based Hardware Timer Interrupt is better

Imagine you have a system with a mission-critical function, measuring water level and control the sump pump or doing something much more important. You normally use a software timer to poll, or even place the function in loop(). But what if another function is blocking the loop() or setup().

So your function might not be executed, and the result would be disastrous.

You’d prefer to have your function called, no matter what happening with other functions (busy loop, bug, etc.).

The correct choice is to use a Hardware Timer with Interrupt to call your function.

These hardware timers, using interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That’s necessary if you need to measure some data requiring better accuracy.

Functions using normal software timers, relying on loop() and calling millis(), won’t work if the loop() or setup() is blocked by certain operation. For example, certain function is blocking while it’s connecting to WiFi or some services.

The catch is your function is now part of an ISR (Interrupt Service Routine), and must be lean / mean, and follow certain rules. More to read on:

HOWTO Attach Interrupt


Currently supported Boards

  1. AdaFruit Feather nRF52832, nRF52840 Express, BlueFruit Sense, Itsy-Bitsy nRF52840 Express, Metro nRF52840 Express, NINA_B302_ublox, NINA_B112_ublox etc.
  2. Sparkfun Pro nRF52840 Mini
  3. Seeeduino nRF52840-based boards such as SEEED_XIAO_NRF52840 and SEEED_XIAO_NRF52840_SENSE, etc. using Seeeduino nRF%2 core

Important Notes about ISR

  1. Inside the attached function, delay() won’t work and the value returned by millis() will not increment. Serial data received while in the function may be lost. You should declare as volatile any variables that you modify within the attached function.

  2. Typically global variables are used to pass data between an ISR and the main program. To make sure variables shared between an ISR and the main program are updated correctly, declare them as volatile.

—-

Prerequisites

  1. Arduino IDE 1.8.19+ for Arduino. GitHub release
  2. Adafruit nRF52 v1.3.0+ for nRF52 boards such as Adafruit NRF52840_FEATHER, NRF52832_FEATHER, NRF52840_FEATHER_SENSE, NRF52840_ITSYBITSY, NRF52840_CIRCUITPLAY, NRF52840_CLUE, NRF52840_METRO, NRF52840_PCA10056, PARTICLE_XENON, NINA_B302_ublox, etc. GitHub release
  3. Seeeduino nRF52 core 1.0.0+ for Seeeduino nRF52840-based boards such as Seeed_XIAO_NRF52840 and Seeed_XIAO_NRF52840_SENSE. GitHub release
  4. Blynk library 1.1.0. Latest release to use with certain example.
  5. To use with certain example, depending on which Ethernet card you’re using:
  6. WiFiNINA_Generic library v1.8.15-1+ to use WiFiNINA modules/shields. To install. check arduino-library-badge if using WiFiNINA for boards such as nRF52, etc.
  7. Blynk_WiFiNINA_WM library 1.1.2+ to use with Blynk-WiFiNINA-related example. To install. check arduino-library-badge
  8. To use with certain example

—-

Installation

Use Arduino Library Manager

The best and easiest way is to use Arduino Library Manager. Search for NRF52_TimerInterrupt, then select / install the latest version.
You can also use this link arduino-library-badge for more detailed instructions.

Manual Install

Another way to install is to:

  1. Navigate to NRF52_TimerInterrupt page.
  2. Download the latest release NRF52_TimerInterrupt-main.zip.
  3. Extract the zip file to NRF52_TimerInterrupt-main directory
  4. Copy whole NRF52_TimerInterrupt-main folder to Arduino libraries’ directory such as ~/Arduino/libraries/.

VS Code & PlatformIO

  1. Install VS Code
  2. Install PlatformIO
  3. Install NRF52_TimerInterrupt library by using Library Manager. Search for NRF52_TimerInterrupt in Platform.io Author’s Libraries
  4. Use included platformio.ini file from examples to ensure that all dependent libraries will installed automatically. Please visit documentation for the other options and examples at Project Configuration File

—-

Packages’ Patches

1. For Adafruit nRF52840 and nRF52832 boards

To be able to compile, run and automatically detect and display BOARD_NAME on nRF52840/nRF52832 boards, you have to copy the whole nRF52 1.3.0 directory into Adafruit nRF52 directory (~/.arduino15/packages/adafruit/hardware/nrf52/1.3.0).

Supposing the Adafruit nRF52 version is 1.3.0. These files must be copied into the directory:

  • ~/.arduino15/packages/adafruit/hardware/nrf52/1.3.0/platform.txt
  • ~/.arduino15/packages/adafruit/hardware/nrf52/1.3.0/boards.txt
  • ~/.arduino15/packages/adafruit/hardware/nrf52/1.3.0/variants/NINA_B302_ublox/variant.h
  • ~/.arduino15/packages/adafruit/hardware/nrf52/1.3.0/variants/NINA_B302_ublox/variant.cpp
  • ~/.arduino15/packages/adafruit/hardware/nrf52/1.3.0/variants/NINA_B112_ublox/variant.h
  • ~/.arduino15/packages/adafruit/hardware/nrf52/1.3.0/variants/NINA_B112_ublox/variant.cpp
  • ~/.arduino15/packages/adafruit/hardware/nrf52/1.3.0/cores/nRF5/Udp.h

Whenever a new version is installed, remember to copy these files into the new version directory. For example, new version is x.yy.z
These files must be copied into the directory:

  • ~/.arduino15/packages/adafruit/hardware/nrf52/x.yy.z/platform.txt
  • ~/.arduino15/packages/adafruit/hardware/nrf52/x.yy.z/boards.txt
  • ~/.arduino15/packages/adafruit/hardware/nrf52/x.yy.z/variants/NINA_B302_ublox/variant.h
  • ~/.arduino15/packages/adafruit/hardware/nrf52/x.yy.z/variants/NINA_B302_ublox/variant.cpp
  • ~/.arduino15/packages/adafruit/hardware/nrf52/x.yy.z/variants/NINA_B112_ublox/variant.h
  • ~/.arduino15/packages/adafruit/hardware/nrf52/x.yy.z/variants/NINA_B112_ublox/variant.cpp
  • ~/.arduino15/packages/adafruit/hardware/nrf52/x.yy.z/cores/nRF5/Udp.h

To use Sparkfun Pro nRF52840 Mini, you must install Packages_Patches and use Adafruit nrf52 core v1.0.0+

—-

Libraries’ Patches

1. For application requiring 2K+ HTML page

If your application requires 2K+ HTML page, the current Ethernet library must be modified if you are using W5200/W5500 Ethernet shields. W5100 is not supported for 2K+ buffer. If you use boards requiring different CS/SS pin for W5x00 Ethernet shield, for example ESP32, ESP8266, nRF52, etc., you also have to modify the following libraries to be able to specify the CS/SS pin correctly.

2. For Ethernet library

To fix Ethernet library, just copy these following files into the Ethernet library directory to overwrite the old files:

3. For EthernetLarge library

To fix EthernetLarge library, just copy these following files into the EthernetLarge library directory to overwrite the old files:

4. For Ethernet2 library

To fix Ethernet2 library, just copy these following files into the Ethernet2 library directory to overwrite the old files:

To add UDP Multicast support, necessary for the UPnP_Generic library:

5. For Ethernet3 library

  1. To fix Ethernet3 library, just copy these following files into the Ethernet3 library directory to overwrite the old files:

6. For UIPEthernet library

To be able to compile and run on nRF52 boards with ENC28J60 using UIPEthernet library, you have to copy these following files into the UIPEthernet utility directory to overwrite the old files:

—-

HOWTO Fix Multiple Definitions Linker Error

The current library implementation, using xyz-Impl.h instead of standard xyz.cpp, possibly creates certain Multiple Definitions Linker error in certain use cases.

You can include .hpp

  1. // Can be included as many times as necessary, without `Multiple Definitions` Linker Error
  2. #include "NRF52TimerInterrupt.hpp" //https://github.com/khoih-prog/NRF52_TimerInterrupt
  3. // Can be included as many times as necessary, without `Multiple Definitions` Linker Error
  4. #include "NRF52_ISR_Timer.hpp" //https://github.com/khoih-prog/NRF52_TimerInterrupt

in many files. But be sure to use the following .h files in just 1 .h, .cpp or .ino file, which must not be included in any other file, to avoid Multiple Definitions Linker Error

  1. // To be included only in main(), .ino with setup() to avoid `Multiple Definitions` Linker Error
  2. #include "NRF52TimerInterrupt.h" //https://github.com/khoih-prog/NRF52_TimerInterrupt
  3. // To be included only in main(), .ino with setup() to avoid `Multiple Definitions` Linker Error
  4. #include "NRF52_ISR_Timer.h" //https://github.com/khoih-prog/NRF52_TimerInterrupt

—-

New from v1.0.0

Now with these new 16 ISR-based timers (while consuming only 1 hardware timer), the maximum interval is practically unlimited (limited only by unsigned long milliseconds). The accuracy is nearly perfect compared to software timers. The most important feature is they’re ISR-based timers Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.

The ISR_16_Timers_Array, ISR_Timer_Complex_Ethernet and ISR_Timer_Complex_WiFiNINA examples will demonstrate the nearly perfect accuracy compared to software timers by printing the actual elapsed millisecs of each type of timers.
Being ISR-based timers, their executions are not blocked by bad-behaving functions / tasks, such as connecting to WiFi, Internet and Blynk services. You can also have many (up to 16) timers to use.
This non-being-blocked important feature is absolutely necessary for mission-critical tasks.
You’ll see blynkTimer Software is blocked while system is connecting to WiFi / Internet / Blynk, as well as by blocking task
in loop(), using delay() function as an example. The elapsed time then is very unaccurate

—-

Usage

Before using any Timer, you have to make sure the Timer has not been used by any other purpose.

1. Using only Hardware Timer directly

1.1 Init Hardware Timer

  1. // Depending on the board, you can select NRF52 Hardware Timer from NRF_TIMER_1-NRF_TIMER_4 (1 to 4)
  2. // If you select the already-used NRF_TIMER_0, it'll be auto modified to use NRF_TIMER_1
  3. // Init NRF52 timer NRF_TIMER1
  4. NRF52Timer ITimer(NRF_TIMER_1);

1.2 Set Hardware Timer Interval and attach Timer Interrupt Handler function

Use one of these functions with interval in unsigned long milliseconds

  1. // interval (in microseconds).
  2. // No params and duration now. To be added in the future by adding similar functions here or to NRF52-hal-timer.c
  3. bool setInterval(unsigned long interval, timerCallback callback);
  4. // interval (in microseconds).
  5. // No params and duration now. To be added in the future by adding similar functions here or to NRF52-hal-timer.c
  6. bool attachInterruptInterval(unsigned long interval, timerCallback callback);

as follows

  1. void TimerHandler(void)
  2. {
  3. // Doing something here inside ISR
  4. }
  5. #define TIMER_INTERVAL_MS 1000 // 1s = 1000ms
  6. void setup()
  7. {
  8. ....
  9. // Interval in microsecs
  10. if (ITimer.attachInterruptInterval(TIMER_INTERVAL_MS * 1000, TimerHandler0))
  11. {
  12. Serial.print(F("Starting ITimer0 OK, millis() = ")); Serial.println(millis());
  13. }
  14. else
  15. Serial.println(F("Can't set ITimer0. Select another freq. or timer));
  16. }

1.3 Set Hardware Timer Frequency and attach Timer Interrupt Handler function

Use one of these functions with frequency in float Hz

  1. // frequency (in hertz).
  2. // No params and duration now. To be added in the future by adding similar functions here or to NRF52-hal-timer.c
  3. bool setFrequency(float frequency, timerCallback callback);
  4. // frequency (in hertz).
  5. bool attachInterrupt(float frequency, timerCallback callback);

as follows

  1. void TimerHandler0()
  2. {
  3. // Doing something here inside ISR
  4. }
  5. #define TIMER0_FREQ_HZ 5555.555
  6. void setup()
  7. {
  8. ....
  9. // Frequency in float Hz
  10. if (ITimer0.attachInterrupt(TIMER0_FREQ_HZ, TimerHandler0))
  11. {
  12. Serial.print(F("Starting ITimer0 OK, millis() = ")); Serial.println(millis());
  13. }
  14. else
  15. Serial.println(F("Can't set ITimer0. Select another freq. or timer));
  16. }

2. Using 16 ISR_based Timers from 1 Hardware Timer

2.1 Important Note

The 16 ISR_based Timers, designed for long timer intervals, only support using unsigned long millisec intervals. If you have to use much higher frequency or sub-millisecond interval, you have to use the Hardware Timers directly as in 1.3 Set Hardware Timer Frequency and attach Timer Interrupt Handler function

2.2 Init Hardware Timer and ISR-based Timer

  1. /// Depending on the board, you can select NRF52 Hardware Timer from NRF_TIMER_1-NRF_TIMER_4 (1 to 4)
  2. // If you select the already-used NRF_TIMER_0, it'll be auto modified to use NRF_TIMER_1
  3. // Init NRF52 timer NRF_TIMER2
  4. NRF52Timer ITimer(NRF_TIMER_2);
  5. // Init NRF52_ISR_Timer
  6. // Each NRF52_ISR_Timer can service 16 different ISR-based timers
  7. NRF52_ISR_Timer ISR_Timer;

2.3 Set Hardware Timer Interval and attach Timer Interrupt Handler functions

  1. void TimerHandler(void)
  2. {
  3. ISR_Timer.run();
  4. }
  5. #define HW_TIMER_INTERVAL_MS 50L
  6. #define TIMER_INTERVAL_2S 2000L
  7. #define TIMER_INTERVAL_5S 5000L
  8. #define TIMER_INTERVAL_11S 11000L
  9. #define TIMER_INTERVAL_101S 101000L
  10. // In NRF52, avoid doing something fancy in ISR, for example complex Serial.print with String() argument
  11. // The pure simple Serial.prints here are just for demonstration and testing. Must be eliminate in working environment
  12. // Or you can get this run-time error / crash
  13. void doingSomething2s()
  14. {
  15. // Doing something here inside ISR
  16. }
  17. void doingSomething5s()
  18. {
  19. // Doing something here inside ISR
  20. }
  21. void doingSomething11s()
  22. {
  23. // Doing something here inside ISR
  24. }
  25. void doingSomething101s()
  26. {
  27. // Doing something here inside ISR
  28. }
  29. void setup()
  30. {
  31. ....
  32. // Interval in microsecs
  33. if (ITimer.attachInterruptInterval(HW_TIMER_INTERVAL_MS * 1000, TimerHandler))
  34. {
  35. lastMillis = millis();
  36. Serial.print(F("Starting ITimer OK, millis() = ")); Serial.println(lastMillis);
  37. }
  38. else
  39. Serial.println(F("Can't set ITimer correctly. Select another freq. or interval"));
  40. // Just to demonstrate, don't use too many ISR Timers if not absolutely necessary
  41. // You can use up to 16 timer for each ISR_Timer
  42. ISR_Timer.setInterval(TIMER_INTERVAL_2S, doingSomething2s);
  43. ISR_Timer.setInterval(TIMER_INTERVAL_5S, doingSomething5s);
  44. ISR_Timer.setInterval(TIMER_INTERVAL_11S, doingSomething11s);
  45. ISR_Timer.setInterval(TIMER_INTERVAL_101S, doingSomething101s);
  46. }

—-

Examples:

  1. Argument_None
  2. ISR_16_Timers_Array
  3. ISR_16_Timers_Array_Complex
  4. ISR_RPM_Measure
  5. ISR_Timer_Complex_Ethernet
  6. ISR_Timer_Complex_WiFiNINA
  7. RPM_Measure
  8. SwitchDebounce
  9. TimerInterruptTest
    1. TimerInterruptLEDDemo
    2. FakeAnalogWrite.
    3. Change_Interval.
    4. multiFileProject. New

—-

Example ISR_16_Timers_Array_Complex

https://github.com/khoih-prog/NRF52_TimerInterrupt/blob/3cdaf91d2c2fd952dd81f60246ff8bbaffdcf7df/examples/ISR_16_Timers_Array_Complex/ISR_16_Timers_Array_Complex.ino#L35-L381

—-

Debug Terminal Output Samples

1. ISR_Timer_Complex_Ethernet on Adafruit NRF52840_FEATHER using W5500 Ethernet

The following is the sample terminal output when running example ISR_Timer_Complex_Ethernet on Adafruit NRF52840_FEATHER EXPRESS using W5500 Ethernet* to demonstrate the accuracy of ISR Hardware Timer, especially when system is very busy. The ISR timer is programmed for 2s, is activated exactly after 2.000s !!!**

While software timer, programmed for 2s, is activated after 4.867s !!!. Then in loop(), it’s also activated every 3s.

  1. Starting ISR_Timer_Complex_Ethernet on NRF52840_FEATHER
  2. NRF52TimerInterrupt v1.4.2
  3. CPU Frequency = 64 MHz
  4. [TISR] F_CPU (MHz) = 64, Timer = NRF_TIMER2, Timer Clock (Hz) = 1000000.00
  5. [TISR] Frequency = 20.00, _count = 10000
  6. Starting ITimer OK, millis() = 1419
  7. [1419] Getting IP...
  8. [1419] MAC: FE-BE-97-DA-C3-EA
  9. _pinCS = 0
  10. W5100 init, using SS_PIN_DEFAULT = 10, new ss_pin = 10, W5100Class::ss_pin = 10
  11. W5100::init: W5500, SSIZE =4096
  12. [3104] IP:192.168.2.129
  13. [3104]
  14. ___ __ __
  15. / _ )/ /_ _____ / /__
  16. / _ / / // / _ \/ '_/
  17. /____/_/\_, /_//_/_/\_\
  18. /___/ v0.6.1 on ARDUINO_NRF52_ADAFRUIT
  19. [3106] BlynkArduinoClient.connect: Connecting to account.duckdns.org:8080
  20. [3218] Ready (ping: 8ms).
  21. IP = 192.168.2.129
  22. 2s: Delta ms = 2000
  23. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 4867
  24. 2s: Delta ms = 2000
  25. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  26. 2s: Delta ms = 2000
  27. 2s: Delta ms = 2000
  28. 5s: Delta ms = 5000
  29. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  30. 2s: Delta ms = 2000
  31. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  32. 2s: Delta ms = 2000
  33. 5s: Delta ms = 5000
  34. 2s: Delta ms = 2000
  35. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  36. 2s: Delta ms = 2000
  37. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  38. 2s: Delta ms = 2000
  39. 5s: Delta ms = 5000
  40. 2s: Delta ms = 2000
  41. 11s: Delta ms = 11000
  42. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  43. 2s: Delta ms = 2000
  44. 5s: Delta ms = 5000
  45. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  46. 2s: Delta ms = 2000
  47. 2s: Delta ms = 2000
  48. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  49. 2s: Delta ms = 2000
  50. 5s: Delta ms = 5000
  51. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  52. 2s: Delta ms = 2000
  53. 11s: Delta ms = 11000
  54. 2s: Delta ms = 2000
  55. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  56. 5s: Delta ms = 5000
  57. 2s: Delta ms = 2000
  58. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  59. 2s: Delta ms = 2000
  60. 2s: Delta ms = 2000
  61. 5s: Delta ms = 5000
  62. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  63. 2s: Delta ms = 2000
  64. 21s: Delta ms = 21000
  65. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  66. 2s: Delta ms = 2000
  67. 11s: Delta ms = 11000
  68. 5s: Delta ms = 5000
  69. 2s: Delta ms = 2000
  70. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  71. 2s: Delta ms = 2000
  72. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  73. 2s: Delta ms = 2000
  74. 5s: Delta ms = 5000
  75. 2s: Delta ms = 2000
  76. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
  77. 2s: Delta ms = 2000
  78. 5s: Delta ms = 5000
  79. 11s: Delta ms = 11000
  80. blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000

2. TimerInterruptTest on Adafruit NRF52840_FEATHER

The following is the sample terminal output when running example TimerInterruptTest on Adafruit NRF52840_FEATHER to demonstrate the accuracy and how to start/stop Hardware Timers.

  1. Starting TimerInterruptTest on NRF52840_FEATHER
  2. NRF52TimerInterrupt v1.4.2
  3. CPU Frequency = 64 MHz
  4. [TISR] F_CPU (MHz) = 64, Timer = NRF_TIMER1, Timer Clock (Hz) = 1000000.00
  5. [TISR] Frequency = 1.00, _count = 1000000
  6. Starting ITimer0 OK, millis() = 1020
  7. [TISR] F_CPU (MHz) = 64, Timer = NRF_TIMER4, Timer Clock (Hz) = 1000000.00
  8. [TISR] Frequency = 0.33, _count = 3000000
  9. Starting ITimer1 OK, millis() = 1021
  10. Stop ITimer0, millis() = 5001
  11. Start ITimer0, millis() = 10002
  12. Stop ITimer1, millis() = 15001
  13. Stop ITimer0, millis() = 15003
  14. Start ITimer0, millis() = 20004
  15. Stop ITimer0, millis() = 25005
  16. Start ITimer1, millis() = 30002
  17. Start ITimer0, millis() = 30006
  18. Stop ITimer0, millis() = 35007
  19. Start ITimer0, millis() = 40008
  20. Stop ITimer1, millis() = 45003
  21. Stop ITimer0, millis() = 45009
  22. Start ITimer0, millis() = 50010
  23. Stop ITimer0, millis() = 55011
  24. Start ITimer1, millis() = 60004
  25. Start ITimer0, millis() = 60012
  26. Stop ITimer0, millis() = 65013
  27. Start ITimer0, millis() = 70014
  28. Stop ITimer1, millis() = 75005
  29. Stop ITimer0, millis() = 75015
  30. Start ITimer0, millis() = 80016
  31. Stop ITimer0, millis() = 85017

3. Argument_None on Adafruit NRF52840_FEATHER

The following is the sample terminal output when running example Argument_None on Adafruit NRF52840_FEATHER to demonstrate the accuracy of Hardware Timers.

  1. Starting Argument_None on NRF52840_FEATHER
  2. NRF52TimerInterrupt v1.4.2
  3. CPU Frequency = 64 MHz
  4. [TISR] F_CPU (MHz) = 64, Timer = NRF_TIMER1, Timer Clock (Hz) = 1000000.00
  5. [TISR] Frequency = 1.00, _count = 1000000
  6. Starting ITimer0 OK, millis() = 1024
  7. [TISR] F_CPU (MHz) = 64, Timer = NRF_TIMER2, Timer Clock (Hz) = 1000000.00
  8. [TISR] Frequency = 0.20, _count = 5000000
  9. Starting ITimer1 OK, millis() = 1025
  10. Time = 10001, Timer0Count = 8, , Timer1Count = 1
  11. Time = 20002, Timer0Count = 18, , Timer1Count = 3
  12. Time = 30003, Timer0Count = 28, , Timer1Count = 5
  13. Time = 40004, Timer0Count = 38, , Timer1Count = 7
  14. Time = 50005, Timer0Count = 48, , Timer1Count = 9
  15. Time = 60006, Timer0Count = 58, , Timer1Count = 11
  16. Time = 70007, Timer0Count = 68, , Timer1Count = 13
  17. Time = 80008, Timer0Count = 78, , Timer1Count = 15
  18. Time = 90009, Timer0Count = 88, , Timer1Count = 17

4. ISR_16_Timers_Array_Complex on Adafruit NRF52840_FEATHER

The following is the sample terminal output when running new example ISR_16_Timers_Array_Complex on Adafruit NRF52840_FEATHER to demonstrate the accuracy of ISR Hardware Timer, especially when system is very busy or blocked. The 16 independent ISR timers are programmed to be activated repetitively after certain intervals, is activated exactly after that programmed interval !!!

While software timer, programmed for 2s, is activated after 10.000s in loop()!!!.

In this example, 16 independent ISR Timers are used, yet utilized just one Hardware Timer. The Timer Intervals and Function Pointers are stored in arrays to facilitate the code modification.

  1. Starting ISR_16_Timers_Array_Complex on NRF52840_FEATHER
  2. NRF52TimerInterrupt v1.4.2
  3. CPU Frequency = 64 MHz
  4. [TISR] F_CPU (MHz) = 64, Timer = NRF_TIMER2, Timer Clock (Hz) = 1000000.00
  5. [TISR] Frequency = 100.00, _count = 10000
  6. Starting ITimer OK, millis() = 1518
  7. SimpleTimer : 2s, ms = 11409, Dms : 10000
  8. Timer : 0, programmed : 5000, actual : 5005
  9. Timer : 1, programmed : 10000, actual : 0
  10. Timer : 2, programmed : 15000, actual : 0
  11. Timer : 3, programmed : 20000, actual : 0
  12. Timer : 4, programmed : 25000, actual : 0
  13. Timer : 5, programmed : 30000, actual : 0
  14. Timer : 6, programmed : 35000, actual : 0
  15. Timer : 7, programmed : 40000, actual : 0
  16. Timer : 8, programmed : 45000, actual : 0
  17. Timer : 9, programmed : 50000, actual : 0
  18. Timer : 10, programmed : 55000, actual : 0
  19. Timer : 11, programmed : 60000, actual : 0
  20. Timer : 12, programmed : 65000, actual : 0
  21. Timer : 13, programmed : 70000, actual : 0
  22. Timer : 14, programmed : 75000, actual : 0
  23. Timer : 15, programmed : 80000, actual : 0
  24. SimpleTimer : 2s, ms = 21415, Dms : 10006
  25. Timer : 0, programmed : 5000, actual : 4992
  26. Timer : 1, programmed : 10000, actual : 9993
  27. Timer : 2, programmed : 15000, actual : 15008
  28. Timer : 3, programmed : 20000, actual : 20000
  29. Timer : 4, programmed : 25000, actual : 0
  30. Timer : 5, programmed : 30000, actual : 0
  31. Timer : 6, programmed : 35000, actual : 0
  32. Timer : 7, programmed : 40000, actual : 0
  33. Timer : 8, programmed : 45000, actual : 0
  34. Timer : 9, programmed : 50000, actual : 0
  35. Timer : 10, programmed : 55000, actual : 0
  36. Timer : 11, programmed : 60000, actual : 0
  37. Timer : 12, programmed : 65000, actual : 0
  38. Timer : 13, programmed : 70000, actual : 0
  39. Timer : 14, programmed : 75000, actual : 0
  40. Timer : 15, programmed : 80000, actual : 0
  41. SimpleTimer : 2s, ms = 31416, Dms : 10001
  42. Timer : 0, programmed : 5000, actual : 4994
  43. Timer : 1, programmed : 10000, actual : 10001
  44. Timer : 2, programmed : 15000, actual : 14993
  45. Timer : 3, programmed : 20000, actual : 20000
  46. Timer : 4, programmed : 25000, actual : 25007
  47. Timer : 5, programmed : 30000, actual : 30001
  48. Timer : 6, programmed : 35000, actual : 0
  49. Timer : 7, programmed : 40000, actual : 0
  50. Timer : 8, programmed : 45000, actual : 0
  51. Timer : 9, programmed : 50000, actual : 0
  52. Timer : 10, programmed : 55000, actual : 0
  53. Timer : 11, programmed : 60000, actual : 0
  54. Timer : 12, programmed : 65000, actual : 0
  55. Timer : 13, programmed : 70000, actual : 0
  56. Timer : 14, programmed : 75000, actual : 0
  57. Timer : 15, programmed : 80000, actual : 0
  58. SimpleTimer : 2s, ms = 41417, Dms : 10001
  59. Timer : 0, programmed : 5000, actual : 4994
  60. Timer : 1, programmed : 10000, actual : 10000
  61. Timer : 2, programmed : 15000, actual : 14993
  62. Timer : 3, programmed : 20000, actual : 20001
  63. Timer : 4, programmed : 25000, actual : 25007
  64. Timer : 5, programmed : 30000, actual : 30001
  65. Timer : 6, programmed : 35000, actual : 35007
  66. Timer : 7, programmed : 40000, actual : 40001
  67. Timer : 8, programmed : 45000, actual : 0
  68. Timer : 9, programmed : 50000, actual : 0
  69. Timer : 10, programmed : 55000, actual : 0
  70. Timer : 11, programmed : 60000, actual : 0
  71. Timer : 12, programmed : 65000, actual : 0
  72. Timer : 13, programmed : 70000, actual : 0
  73. Timer : 14, programmed : 75000, actual : 0
  74. Timer : 15, programmed : 80000, actual : 0
  75. SimpleTimer : 2s, ms = 51438, Dms : 10021
  76. Timer : 0, programmed : 5000, actual : 5005
  77. Timer : 1, programmed : 10000, actual : 10006
  78. Timer : 2, programmed : 15000, actual : 15001
  79. Timer : 3, programmed : 20000, actual : 20001
  80. Timer : 4, programmed : 25000, actual : 25000
  81. Timer : 5, programmed : 30000, actual : 30001
  82. Timer : 6, programmed : 35000, actual : 35007
  83. Timer : 7, programmed : 40000, actual : 40001
  84. Timer : 8, programmed : 45000, actual : 45002
  85. Timer : 9, programmed : 50000, actual : 50007
  86. Timer : 10, programmed : 55000, actual : 0
  87. Timer : 11, programmed : 60000, actual : 0
  88. Timer : 12, programmed : 65000, actual : 0
  89. Timer : 13, programmed : 70000, actual : 0
  90. Timer : 14, programmed : 75000, actual : 0
  91. Timer : 15, programmed : 80000, actual : 0
  92. SimpleTimer : 2s, ms = 61440, Dms : 10002
  93. Timer : 0, programmed : 5000, actual : 4998
  94. Timer : 1, programmed : 10000, actual : 9996
  95. Timer : 2, programmed : 15000, actual : 15001
  96. Timer : 3, programmed : 20000, actual : 20002
  97. Timer : 4, programmed : 25000, actual : 25000
  98. Timer : 5, programmed : 30000, actual : 30002
  99. Timer : 6, programmed : 35000, actual : 35007
  100. Timer : 7, programmed : 40000, actual : 40001
  101. Timer : 8, programmed : 45000, actual : 45002
  102. Timer : 9, programmed : 50000, actual : 50007
  103. Timer : 10, programmed : 55000, actual : 55005
  104. Timer : 11, programmed : 60000, actual : 60003
  105. Timer : 12, programmed : 65000, actual : 0
  106. Timer : 13, programmed : 70000, actual : 0
  107. Timer : 14, programmed : 75000, actual : 0
  108. Timer : 15, programmed : 80000, actual : 0
  109. SimpleTimer : 2s, ms = 71444, Dms : 10004
  110. Timer : 0, programmed : 5000, actual : 4994
  111. Timer : 1, programmed : 10000, actual : 9998
  112. Timer : 2, programmed : 15000, actual : 15001
  113. Timer : 3, programmed : 20000, actual : 20002
  114. Timer : 4, programmed : 25000, actual : 25000
  115. Timer : 5, programmed : 30000, actual : 30002
  116. Timer : 6, programmed : 35000, actual : 34994
  117. Timer : 7, programmed : 40000, actual : 40001
  118. Timer : 8, programmed : 45000, actual : 45002
  119. Timer : 9, programmed : 50000, actual : 50007
  120. Timer : 10, programmed : 55000, actual : 55005
  121. Timer : 11, programmed : 60000, actual : 60003
  122. Timer : 12, programmed : 65000, actual : 65007
  123. Timer : 13, programmed : 70000, actual : 70001
  124. Timer : 14, programmed : 75000, actual : 0
  125. Timer : 15, programmed : 80000, actual : 0
  126. SimpleTimer : 2s, ms = 81448, Dms : 10004
  127. Timer : 0, programmed : 5000, actual : 4993
  128. Timer : 1, programmed : 10000, actual : 9999
  129. Timer : 2, programmed : 15000, actual : 15004
  130. Timer : 3, programmed : 20000, actual : 19997
  131. Timer : 4, programmed : 25000, actual : 25000
  132. Timer : 5, programmed : 30000, actual : 30002
  133. Timer : 6, programmed : 35000, actual : 34994
  134. Timer : 7, programmed : 40000, actual : 39999
  135. Timer : 8, programmed : 45000, actual : 45002
  136. Timer : 9, programmed : 50000, actual : 50007
  137. Timer : 10, programmed : 55000, actual : 55005
  138. Timer : 11, programmed : 60000, actual : 60003
  139. Timer : 12, programmed : 65000, actual : 65007
  140. Timer : 13, programmed : 70000, actual : 70001
  141. Timer : 14, programmed : 75000, actual : 75007
  142. Timer : 15, programmed : 80000, actual : 80000

5. SwitchDebounce on Adafruit NRF52840_FEATHER

The following is the sample terminal output when running example SwitchDebounce on Adafruit NRF52840_FEATHER to demonstrate the usage of Hardware Timers for Switch Debouncing.

  1. Starting SwitchDebounce on NRF52840_FEATHER
  2. NRF52TimerInterrupt v1.4.2
  3. CPU Frequency = 64 MHz
  4. [TISR] F_CPU (MHz) = 64, Timer = NRF_TIMER1, Timer Clock (Hz) = 1000000.00
  5. [TISR] Frequency = 100.00, _count = 10000
  6. Starting ITimer OK, millis() = 1560
  7. Time = 1560, Switch = Released
  8. Time = 2561, Switch = Released
  9. Time = 3562, Switch = Released
  10. Time = 4563, Switch = Released
  11. ...
  12. Time = 73632, Switch = Released
  13. Time = 74633, Switch = Released
  14. Time = 75634, Switch = Released
  15. Time = 76635, Switch = Released
  16. Time = 77636, Switch = Pressed
  17. Time = 78637, Switch = Pressed
  18. Time = 79638, Switch = Pressed
  19. Time = 80639, Switch = Pressed
  20. Time = 81640, Switch = Pressed
  21. Time = 82641, Switch = LongPressed
  22. Time = 83642, Switch = LongPressed
  23. Time = 84643, Switch = LongPressed
  24. Time = 85644, Switch = Released
  25. Time = 86645, Switch = Released
  26. Time = 87646, Switch = Released

6. Change_Interval on Adafruit NRF52840_FEATHER

The following is the sample terminal output when running example Change_Interval on Adafruit NRF52840_FEATHER to demonstrate how to change Timer Interval on-the-fly

  1. Starting Change_Interval on NRF52840_FEATHER
  2. NRF52TimerInterrupt v1.4.2
  3. CPU Frequency = 64 MHz
  4. [TISR] F_CPU (MHz) = 64, Timer = NRF_TIMER4, Timer Clock (Hz) = 1000000.00
  5. [TISR] Frequency = 2.00, _count = 500000
  6. Starting ITimer0 OK, millis() = 1321
  7. [TISR] F_CPU (MHz) = 64, Timer = NRF_TIMER3, Timer Clock (Hz) = 1000000.00
  8. [TISR] Frequency = 0.50, _count = 2000000
  9. Starting ITimer1 OK, millis() = 1322
  10. Time = 10001, Timer0Count = 17, , Timer1Count = 4
  11. Time = 20002, Timer0Count = 37, , Timer1Count = 9
  12. Changing Interval, Timer0 = 1000, Timer1 = 4000
  13. Time = 30003, Timer0Count = 47, , Timer1Count = 11
  14. Time = 40004, Timer0Count = 57, , Timer1Count = 14
  15. Changing Interval, Timer0 = 500, Timer1 = 2000
  16. Time = 50005, Timer0Count = 77, , Timer1Count = 19
  17. Time = 60006, Timer0Count = 97, , Timer1Count = 24
  18. Changing Interval, Timer0 = 1000, Timer1 = 4000
  19. Time = 70007, Timer0Count = 107, , Timer1Count = 26
  20. Time = 80008, Timer0Count = 117, , Timer1Count = 29
  21. Changing Interval, Timer0 = 500, Timer1 = 2000
  22. Time = 90009, Timer0Count = 137, , Timer1Count = 34
  23. Time = 100010, Timer0Count = 157, , Timer1Count = 39
  24. Changing Interval, Timer0 = 1000, Timer1 = 4000
  25. Time = 110011, Timer0Count = 167, , Timer1Count = 41
  26. Time = 120012, Timer0Count = 177, , Timer1Count = 44
  27. Changing Interval, Timer0 = 500, Timer1 = 2000
  28. Time = 130013, Timer0Count = 197, , Timer1Count = 49
  29. Time = 140014, Timer0Count = 217, , Timer1Count = 54
  30. Changing Interval, Timer0 = 1000, Timer1 = 4000
  31. Time = 150015, Timer0Count = 227, , Timer1Count = 56
  32. Time = 160016, Timer0Count = 237, , Timer1Count = 59
  33. Changing Interval, Timer0 = 500, Timer1 = 2000
  34. Time = 170017, Timer0Count = 257, , Timer1Count = 64
  35. Time = 180018, Timer0Count = 277, , Timer1Count = 69

7. FakeAnalogWrite on Adafruit NRF52840_FEATHER

The following is the sample terminal output when running example FakeAnalogWrite on Adafruit NRF52840_FEATHER to demonstrate how to use analogWrite to many pins to overcome the limitation of nRF52 analogWrite to only 4 pins or crash. Check Arduino Nano 33 BLE mbed os crashes when PWM on more than 3 digital pins

  1. Starting FakeAnalogWrite on NRF52840_FEATHER
  2. NRF52TimerInterrupt v1.4.2
  3. CPU Frequency = 64 MHz
  4. [TISR] F_CPU (MHz) = 64, Timer = NRF_TIMER3, Timer Clock (Hz) = 1000000.00
  5. [TISR] Frequency = 10000.00, _count = 100
  6. Starting ITimer OK, millis() = 1024
  7. Add index = 0, pin = 2, input PWM_Value = 0, mapped PWM_Value = 0
  8. Add index = 1, pin = 3, input PWM_Value = 0, mapped PWM_Value = 0
  9. Add index = 2, pin = 4, input PWM_Value = 0, mapped PWM_Value = 0
  10. Add index = 3, pin = 5, input PWM_Value = 0, mapped PWM_Value = 0
  11. Add index = 4, pin = 6, input PWM_Value = 0, mapped PWM_Value = 0
  12. Add index = 5, pin = 7, input PWM_Value = 0, mapped PWM_Value = 0
  13. Add index = 6, pin = 8, input PWM_Value = 0, mapped PWM_Value = 0
  14. Add index = 7, pin = 9, input PWM_Value = 0, mapped PWM_Value = 0
  15. Test PWM_Value = 0, max = 255
  16. Update index 0, pin = 2, input PWM_Value=5, mapped PWM_Value= 14
  17. Update index 1, pin = 3, input PWM_Value=5, mapped PWM_Value= 14
  18. Update index 2, pin = 4, input PWM_Value=5, mapped PWM_Value= 14
  19. Update index 3, pin = 5, input PWM_Value=5, mapped PWM_Value= 14
  20. Update index 4, pin = 6, input PWM_Value=5, mapped PWM_Value= 14
  21. Update index 5, pin = 7, input PWM_Value=5, mapped PWM_Value= 14
  22. Update index 6, pin = 8, input PWM_Value=5, mapped PWM_Value= 14
  23. Update index 7, pin = 9, input PWM_Value=5, mapped PWM_Value= 14
  24. Test PWM_Value = 5, max = 255
  25. Update index 0, pin = 2, input PWM_Value=10, mapped PWM_Value= 27
  26. Update index 1, pin = 3, input PWM_Value=10, mapped PWM_Value= 27
  27. Update index 2, pin = 4, input PWM_Value=10, mapped PWM_Value= 27
  28. Update index 3, pin = 5, input PWM_Value=10, mapped PWM_Value= 27
  29. Update index 4, pin = 6, input PWM_Value=10, mapped PWM_Value= 27
  30. Update index 5, pin = 7, input PWM_Value=10, mapped PWM_Value= 27
  31. Update index 6, pin = 8, input PWM_Value=10, mapped PWM_Value= 27
  32. Update index 7, pin = 9, input PWM_Value=10, mapped PWM_Value= 27
  33. ...
  34. Test PWM_Value = 145, max = 255
  35. Update index 0, pin = 2, input PWM_Value=150, mapped PWM_Value= 135
  36. Update index 1, pin = 3, input PWM_Value=150, mapped PWM_Value= 135
  37. Update index 2, pin = 4, input PWM_Value=150, mapped PWM_Value= 135
  38. Update index 3, pin = 5, input PWM_Value=150, mapped PWM_Value= 135
  39. Update index 4, pin = 6, input PWM_Value=150, mapped PWM_Value= 135
  40. Update index 5, pin = 7, input PWM_Value=150, mapped PWM_Value= 135
  41. Update index 6, pin = 8, input PWM_Value=150, mapped PWM_Value= 135
  42. Update index 7, pin = 9, input PWM_Value=150, mapped PWM_Value= 135
  43. Test PWM_Value = 150, max = 255
  44. Update index 0, pin = 2, input PWM_Value=155, mapped PWM_Value= 137
  45. Update index 1, pin = 3, input PWM_Value=155, mapped PWM_Value= 137
  46. Update index 2, pin = 4, input PWM_Value=155, mapped PWM_Value= 137
  47. Update index 3, pin = 5, input PWM_Value=155, mapped PWM_Value= 137
  48. Update index 4, pin = 6, input PWM_Value=155, mapped PWM_Value= 137
  49. Update index 5, pin = 7, input PWM_Value=155, mapped PWM_Value= 137
  50. Update index 6, pin = 8, input PWM_Value=155, mapped PWM_Value= 137
  51. Update index 7, pin = 9, input PWM_Value=155, mapped PWM_Value= 137
  52. Test PWM_Value = 155, max = 255
  53. Update index 0, pin = 2, input PWM_Value=160, mapped PWM_Value= 138
  54. Update index 1, pin = 3, input PWM_Value=160, mapped PWM_Value= 138
  55. Update index 2, pin = 4, input PWM_Value=160, mapped PWM_Value= 138
  56. Update index 3, pin = 5, input PWM_Value=160, mapped PWM_Value= 138
  57. Update index 4, pin = 6, input PWM_Value=160, mapped PWM_Value= 138
  58. Update index 5, pin = 7, input PWM_Value=160, mapped PWM_Value= 138
  59. Update index 6, pin = 8, input PWM_Value=160, mapped PWM_Value= 138
  60. Update index 7, pin = 9, input PWM_Value=160, mapped PWM_Value= 138
  61. Test PWM_Value = 160, max = 255
  62. Update index 0, pin = 2, input PWM_Value=165, mapped PWM_Value= 141
  63. Update index 1, pin = 3, input PWM_Value=165, mapped PWM_Value= 141
  64. Update index 2, pin = 4, input PWM_Value=165, mapped PWM_Value= 141
  65. Update index 3, pin = 5, input PWM_Value=165, mapped PWM_Value= 141
  66. Update index 4, pin = 6, input PWM_Value=165, mapped PWM_Value= 141
  67. Update index 5, pin = 7, input PWM_Value=165, mapped PWM_Value= 141
  68. Update index 6, pin = 8, input PWM_Value=165, mapped PWM_Value= 141
  69. Update index 7, pin = 9, input PWM_Value=165, mapped PWM_Value= 141
  70. Test PWM_Value = 165, max = 255
  71. Update index 0, pin = 2, input PWM_Value=170, mapped PWM_Value= 143
  72. Update index 1, pin = 3, input PWM_Value=170, mapped PWM_Value= 143
  73. Update index 2, pin = 4, input PWM_Value=170, mapped PWM_Value= 143
  74. Update index 3, pin = 5, input PWM_Value=170, mapped PWM_Value= 143
  75. Update index 4, pin = 6, input PWM_Value=170, mapped PWM_Value= 143
  76. Update index 5, pin = 7, input PWM_Value=170, mapped PWM_Value= 143
  77. Update index 6, pin = 8, input PWM_Value=170, mapped PWM_Value= 143
  78. Update index 7, pin = 9, input PWM_Value=170, mapped PWM_Value= 143
  79. Test PWM_Value = 170, max = 255

—-

Debug

Debug is enabled by default on Serial.

You can also change the debugging level (TIMERINTERRUPT_LOGLEVEL) from 0 to 4

  1. // These define's must be placed at the beginning before #include "NRF52TimerInterrupt.h"
  2. // _TIMERINTERRUPT_LOGLEVEL_ from 0 to 4
  3. // Don't define _TIMERINTERRUPT_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
  4. #define TIMER_INTERRUPT_DEBUG 0
  5. #define _TIMERINTERRUPT_LOGLEVEL_ 0

Troubleshooting

If you get compilation errors, more often than not, you may need to install a newer version of the core for Arduino boards.

Sometimes, the library will only work if you update the board core to the latest version because I am using newly added functions.

—-

Issues

Submit issues to: NRF52_TimerInterrupt issues


TO DO

  1. Search for bug and improvement.

DONE

  1. Basic hardware timers for NRF52832 and NRF52840
  2. More hardware-initiated software-enabled timers
  3. Longer time interval
  4. Similar features for remaining Arduino boards such as AVR, ESP32, ESP8266, STM32, SAM-DUE, SAMD21/SAMD51, mbed-nRF52, Teensy, etc.
  5. Add Table of Contents
  6. Fix multiple-definitions linker error
  7. Optimize library code by using reference-passing instead of value-passing
  8. Add support to Sparkfun Pro nRF52840 Mini
  9. Add support to Seeeduino nRF52840-based boards such as SEEED_XIAO_NRF52840 and SEEED_XIAO_NRF52840_SENSE, etc. using Seeeduino nRF%2 core
    1. Add astyle using allman style. Restyle the library

—-

Contributions and Thanks

Many thanks for everyone for bug reporting, new feature suggesting, testing and contributing to the development of this library.

  1. Thanks to good work of Miguel Wisintainer for working with, developing, debugging and testing.




tcpipchip
Miguel Wisintainer


Contributing

If you want to contribute to this project:

  • Report bugs and errors
  • Ask for enhancements
  • Create issues and pull requests
  • Tell other people about this library

License

  • The library is licensed under MIT

Copyright 2020- Khoi Hoang