项目作者: sophiaas

项目描述 :
Modular Deep RL infrastructure in PyTorch
高级语言: Python
项目地址: git://github.com/sophiaas/rlbase.git
创建时间: 2019-07-19T00:20:26Z
项目社区:https://github.com/sophiaas/rlbase

开源协议:

下载


rlbase

Modular Deep RL infrastructure in PyTorch.

Currently implemented algorithms include PPO and PPOC (Option-Critic trained with Proximal Policy Optimization).

To train, first write a config file and save to configs/ppo or configs/ppoc. A config file specifies parameters in config objects (found in core/config.py) for each component of the model and experiment, such as optimization hyperparameters, network architectures, environments, logging behavior, etc. See example config at configs/ppo/lightbot.py

The specified configuration and algorithm can then be run by calling:

python train.py --config [config file name] --algo [ppo or ppoc]

See train.py for other options.

To evaluate a pre-trained model, run:

python evaluate.py --model_dir [logging directory] --episode [episode to load checkpoint from] --n_eval_steps [number of steps to evaluate]

Data from the evaluated model is saved to [logging directory]/evaluate/