项目作者: ylikx

项目描述 :
Forpy - use Python from Fortran
高级语言: Fortran
项目地址: git://github.com/ylikx/forpy.git
创建时间: 2018-05-11T17:06:03Z
项目社区:https://github.com/ylikx/forpy

开源协议:GNU Lesser General Public License v3.0

下载


Forpy: A library for Fortran-Python interoperability.

Forpy allows you to use Python features in Fortran (“embedding Python in Fortran”)

It provides datastructures such as list, dict, tuple and interoperability
of arrays using numpy.
With forpy you can even import Python modules in Fortran. Simply use your own or third-party Python modules
for tasks that you can easily do in Python. For example: plot with matplotlib or use scientific
functions from scipy or numpy.

Forpy also works to other way around: You can write Python modules entirely in Fortran (extending Python with Fortran - “Fortran in Python”).

Documentation

Contact

Elias Rabel (ylikx.0 AT gmail.com)

Getting started

A simple example using a Python list:

  1. program intro_to_forpy
  2. use forpy_mod
  3. implicit none
  4. integer :: ierror
  5. type(list) :: my_list
  6. ierror = forpy_initialize()
  7. ierror = list_create(my_list)
  8. ierror = my_list%append(19)
  9. ierror = my_list%append("Hello world!")
  10. ierror = my_list%append(3.14d0)
  11. ierror = print_py(my_list)
  12. call my_list%destroy
  13. call forpy_finalize
  14. end program

Building the example:

To try the examples, copy the file forpy_mod.F90 to your working directory.
Here I assume that you are using Python 3 (version >= 3.3) and
gfortran (ifort also supported).

If you are using Anaconda and have problems when building read
Using forpy with Anaconda.

If you are using Windows, read Forpy on Windows.

For use with Python 2 read Python 2 support.

Save the example as intro_to_forpy.F90 and type, depending on your Python version:

  1. # Python 3.7 and earlier
  2. gfortran -c forpy_mod.F90
  3. gfortran intro_to_forpy.F90 forpy_mod.o `python3-config --ldflags`
  1. # Python 3.8 and higher
  2. gfortran -c forpy_mod.F90
  3. gfortran intro_to_forpy.F90 forpy_mod.o `python3-config --ldflags --embed`

Then run the example with

  1. ./a.out

You should get the output:

  1. [19, 'Hello world!', 3.14]

If python3-config is not found, you might have to install the package python3-dev (on Ubuntu, Debian).

For simplicity this example and most following examples do not contain error handling code.

Tuples, objects

This example introduces tuples and shows how to check for basic Python types.
It demonstrates the methods getitem and setitem, which also work
with list. These methods are generic for important Fortran types.

The type object can be used for any Python object. Use cast to transform an
object into a Fortran type or to transform into
a more specific Python object, such as list or tuple.

  1. program tuple_example
  2. use forpy_mod
  3. implicit none
  4. integer :: ierror
  5. type(tuple) :: tu
  6. type(object) :: item
  7. integer :: int_value
  8. character(len=:), allocatable :: str_value
  9. integer :: ii
  10. integer :: tu_len
  11. ierror = forpy_initialize()
  12. ! Python: tu = (17, "hello", 23, "world")
  13. ierror = tuple_create(tu, 4) ! create tuple with 4 elements
  14. ! Must set all tuple elements before using tuple
  15. ierror = tu%setitem(0, 17)
  16. ierror = tu%setitem(1, "hello")
  17. ierror = tu%setitem(2, 23)
  18. ierror = tu%setitem(3, "world")
  19. ierror = tu%len(tu_len)
  20. do ii = 0, tu_len-1 ! Python indices start at 0
  21. ierror = tu%getitem(item, ii)
  22. ! Use is_int, is_str, is_float, is_none ...
  23. ! to check if an object is of a certain Python type
  24. if (is_int(item)) then
  25. ! Use cast to transform 'item' into Fortran type
  26. ierror = cast(int_value, item)
  27. write(*,*) int_value
  28. else if(is_str(item)) then
  29. ierror = cast(str_value, item)
  30. write(*,*) str_value
  31. endif
  32. call item%destroy
  33. enddo
  34. call tu%destroy
  35. call forpy_finalize
  36. end program

Dictionaries, Error handling

The following example shows how to use a Python dict and shows some
error and exception handling.

  1. program dict_example
  2. use forpy_mod
  3. implicit none
  4. integer :: ierror
  5. type(dict) :: di
  6. real :: a_value
  7. ierror = forpy_initialize()
  8. ierror = dict_create(di) ! Python: di = {}
  9. ierror = di%setitem("temperature", 273.0)
  10. ierror = di%setitem("pressure", 1013.0)
  11. ierror = di%getitem(a_value, "pressure")
  12. write(*,*) "pressure = ", a_value
  13. ! Show some error handling
  14. ierror = di%getitem(a_value, "does not exist")
  15. if (ierror /= 0) then
  16. if (exception_matches(KeyError)) then
  17. write(*,*) "Key not found..."
  18. ! Must clear error after handling exception,
  19. ! if we want to continue with program!
  20. call err_clear
  21. else
  22. write(*,*) "Unknown error..."
  23. stop
  24. endif
  25. endif
  26. ! alternative to getitem: get - returns given default value if key
  27. ! not found, no KeyError exception raised
  28. ierror = di%get(a_value, "volume", 1.0)
  29. write(*,*) "volume = ", a_value
  30. call di%destroy
  31. call forpy_finalize
  32. end program

Import a Python module in Fortran

The following demo, shows how to use a module from Python’s standard
library and introduces call_py, which is used to call Python methods and
to instantiate Python objects.

  1. program date_demo
  2. use forpy_mod
  3. implicit none
  4. integer :: ierror
  5. type(module_py) :: datetime
  6. type(object) :: date, today, today_str
  7. character(len=:), allocatable :: today_fortran
  8. ! Python:
  9. ! import datetime
  10. ! date = datetime.date
  11. ! today = date.today()
  12. ! today_str = today.isoformat()
  13. ! print("Today is ", today_str)
  14. ierror = forpy_initialize()
  15. ierror = import_py(datetime, "datetime")
  16. ierror = datetime%getattribute(date, "date")
  17. ierror = call_py(today, date, "today")
  18. ierror = call_py(today_str, today, "isoformat")
  19. ierror = cast(today_fortran, today_str)
  20. write(*,*) "Today is ", today_fortran
  21. call datetime%destroy
  22. call date%destroy
  23. call today%destroy
  24. call today_str%destroy
  25. call forpy_finalize
  26. end program

For Python to import a module that is not in one of the standard search
directories, you can set the environment variable PYTHONPATH:

  1. export PYTHONPATH=$PYTHONPATH:path_to_my_python_module

Alternatively, you can use forpy’s get_sys_path function to retrieve and modify the list
of Python module search paths, as shown in the following example.

We want to import the following small Python module:

  1. # File: mymodule.py
  2. def print_args(*args, **kwargs):
  3. print("Arguments: ", args)
  4. print("Keyword arguments: ", kwargs)
  5. return "Returned from mymodule.print_args"

Now we use the module in Fortran, assuming that mymodule.py is in the current
working directory:

  1. program mymodule_example
  2. use forpy_mod
  3. implicit none
  4. integer :: ierror
  5. type(tuple) :: args
  6. type(dict) :: kwargs
  7. type(module_py) :: mymodule
  8. type(object) :: return_value
  9. type(list) :: paths
  10. character(len=:), allocatable :: return_string
  11. ierror = forpy_initialize()
  12. ! Instead of setting the environment variable PYTHONPATH,
  13. ! we can add the current directory "." to sys.path
  14. ierror = get_sys_path(paths)
  15. ierror = paths%append(".")
  16. ierror = import_py(mymodule, "mymodule")
  17. ! Python:
  18. ! return_value = mymodule.print_args(12, "Hi", True, message="Hello world!")
  19. ierror = tuple_create(args, 3)
  20. ierror = args%setitem(0, 12)
  21. ierror = args%setitem(1, "Hi")
  22. ierror = args%setitem(2, .true.)
  23. ierror = dict_create(kwargs)
  24. ierror = kwargs%setitem("message", "Hello world!")
  25. ierror = call_py(return_value, mymodule, "print_args", args, kwargs)
  26. ierror = cast(return_string, return_value)
  27. write(*,*) return_string
  28. ! For call_py, args and kwargs are optional
  29. ! use call_py_noret to ignore the return value
  30. ! E. g.:
  31. ! ierror = call_py_noret(mymodule, "print_args")
  32. call args%destroy
  33. call kwargs%destroy
  34. call mymodule%destroy
  35. call return_value%destroy
  36. call paths%destroy
  37. call forpy_finalize
  38. end program

Working with arrays

Forpy offers interoperability of Fortran arrays and numpy arrays through
the type ndarray. In the
following examples, you will see various ways to create a numpy array.

Creating a numpy array from a Fortran array

The simplest way to create a numpy array is with ndarray_create. This
function creates a numpy array with the same content as a Fortran array that is
passed to the function. For example:

  1. program ndarray01
  2. use forpy_mod
  3. implicit none
  4. integer, parameter :: NROWS = 2
  5. integer, parameter :: NCOLS = 3
  6. integer :: ierror, ii, jj
  7. real :: matrix(NROWS, NCOLS)
  8. type(ndarray) :: arr
  9. ierror = forpy_initialize()
  10. do jj = 1, NCOLS
  11. do ii = 1, NROWS
  12. matrix(ii, jj) = real(ii) * jj
  13. enddo
  14. enddo
  15. ! creates a numpy array with the same content as 'matrix'
  16. ierror = ndarray_create(arr, matrix)
  17. ierror = print_py(arr)
  18. call arr%destroy
  19. call forpy_finalize
  20. end program

When arrays get very large, creating a copy might not be what you want. The next section
describes how to wrap a Fortran array with forpy without making a copy.

Creating a numpy wrapper for a Fortran array

When creating a numpy array with ndarray_create_nocopy, no copy of the Fortran
array is made. This is more efficient than ndarray_create, but there are
some things to consider: Changes to the Fortran array affect the numpy array
and vice versa. You have to make sure that the Fortran array is valid
as long as the numpy array is in use.

Since the Fortran array can now be modified not
only directly but also indirectly by the ndarray, it is necessary to
add the asynchronous attribute to the Fortran array declaration, since
without it compiler optimization related bugs
can occur (depending on code, compiler and compiler options).
Alternatively you could also use the volatile attribute.

  1. program ndarray02
  2. use forpy_mod
  3. implicit none
  4. integer, parameter :: NROWS = 2
  5. integer, parameter :: NCOLS = 3
  6. integer :: ierror, ii, jj
  7. ! add the asynchronous attribute to the Fortran array that is wrapped
  8. ! as ndarray to avoid bugs caused by compiler optimizations
  9. real, asynchronous :: matrix(NROWS, NCOLS)
  10. type(ndarray) :: arr
  11. ierror = forpy_initialize()
  12. do jj = 1, NCOLS
  13. do ii = 1, NROWS
  14. matrix(ii, jj) = real(ii) * jj
  15. enddo
  16. enddo
  17. ! creates a numpy array that refers to 'matrix'
  18. ierror = ndarray_create_nocopy(arr, matrix)
  19. ierror = print_py(arr)
  20. matrix(1,1) = 1234.0 ! Change also affects 'arr'
  21. ierror = print_py(arr)
  22. call arr%destroy
  23. call forpy_finalize
  24. end program

Accessing array elements

The following example shows how to access the data of a ndarray with
the method ndarray%get_data. It also shows how to return a ndarray
from a subroutine without using a copy of a Fortran array.

We create a new ndarray with the function ndarray_create_empty,
specifying the shape of the array.
In this case storage is allocated and managed by Python. Memory is freed, when
there is no reference to the ndarray anymore (don’t forget to call the destroy method).

You can also create an array of zeros with ndarray_create_zeros and an array
of ones with ndarray_create_ones.

To edit the values of the array, use the Fortran
pointer returned from ndarray%get_data.

  1. ! Example of how to return a ndarray from a subroutine
  2. program ndarray03
  3. use forpy_mod
  4. use iso_fortran_env, only: real64
  5. implicit none
  6. integer :: ierror
  7. type(ndarray) :: arr
  8. ierror = forpy_initialize()
  9. call create_matrix(arr)
  10. ierror = print_py(arr)
  11. call arr%destroy
  12. call forpy_finalize
  13. CONTAINS
  14. subroutine create_matrix(arr)
  15. type(ndarray), intent(out) :: arr
  16. integer :: ierror, ii, jj
  17. integer, parameter :: NROWS = 2
  18. integer, parameter :: NCOLS = 3
  19. real(kind=real64), dimension(:,:), pointer :: matrix
  20. ierror = ndarray_create_empty(arr, [NROWS, NCOLS], dtype="float64")
  21. !Use ndarray%getdata to access the content of a numpy array
  22. !from Fortran
  23. !type of matrix must be compatible with dtype of ndarray
  24. !(here: real(kind=real64) and dtype="float64")
  25. ierror = arr%get_data(matrix)
  26. do jj = 1, NCOLS
  27. do ii = 1, NROWS
  28. matrix(ii, jj) = real(ii, kind=real64) * jj
  29. enddo
  30. enddo
  31. end subroutine
  32. end program

Matplotlib example

This example puts together, what you have learnt so far and demonstrates
a simple way to do complete error handling and some exception handling.
Save the file with an uppercase .F90 extension, since it uses a
C preprocessor macro for error handling.

  1. #define errcheck if(ierror/=0) then;call err_print;stop;endif
  2. program matplotlib_example
  3. use forpy_mod
  4. implicit none
  5. integer :: ierror, ii
  6. real, parameter :: PI = 3.1415927
  7. integer, parameter :: NPOINTS = 200
  8. real :: x(NPOINTS)
  9. real :: y(NPOINTS)
  10. do ii = 1, NPOINTS
  11. x(ii) = ((ii-1) * 2. * PI)/(NPOINTS-1)
  12. y(ii) = sin(x(ii))
  13. enddo
  14. ierror = forpy_initialize()
  15. ! forpy_initialize returns NO_NUMPY_ERROR if numpy could not be imported
  16. ! You could still use forpy without the array features, but here we need them.
  17. if (ierror == NO_NUMPY_ERROR) then
  18. write(*,*) "This example needs numpy..."
  19. stop
  20. endif
  21. errcheck
  22. call simple_plot(x, y)
  23. call forpy_finalize
  24. CONTAINS
  25. subroutine simple_plot(x, y)
  26. real, asynchronous, intent(in) :: x(:)
  27. real, asynchronous, intent(in) :: y(:)
  28. integer :: ierror
  29. type(module_py) :: plt
  30. type(tuple) :: args
  31. type(ndarray) :: x_arr, y_arr
  32. ierror = import_py(plt, "matplotlib.pyplot")
  33. ! You can also test for certain exceptions
  34. if (ierror /= 0) then
  35. if (exception_matches(ImportError)) then
  36. write(*,*) "This example needs matplotlib..."
  37. stop
  38. else
  39. call err_print
  40. stop
  41. endif
  42. endif
  43. ierror = ndarray_create_nocopy(x_arr, x)
  44. errcheck
  45. ierror = ndarray_create_nocopy(y_arr, y)
  46. errcheck
  47. ierror = tuple_create(args, 2)
  48. errcheck
  49. ierror = args%setitem(0, x_arr)
  50. errcheck
  51. ierror = args%setitem(1, y_arr)
  52. errcheck
  53. ierror = call_py_noret(plt, "plot", args)
  54. errcheck
  55. ierror = call_py_noret(plt, "show")
  56. errcheck
  57. call x_arr%destroy
  58. call y_arr%destroy
  59. call args%destroy
  60. call plt%destroy
  61. end subroutine
  62. end program

Converting between types: cast and cast_nonstrict

As we have seen in previous sections you can convert between types with
the cast interface.
The cast function has a rather strict behaviour, when casting between
types: For example it gives an error, when you try to convert a
Python float to an integer or a list to a tuple.
Use cast_nonstrict if you need more flexibility: it does these type
conversion when possible. For example:

  1. program cast_nonstrict_demo
  2. use forpy_mod
  3. implicit none
  4. type(object) :: obj
  5. character(len=:), allocatable :: fstr
  6. integer :: an_int
  7. integer :: ierror
  8. ierror = forpy_initialize()
  9. ierror = cast(obj, 3.14d0) !creates a Python float
  10. ierror = cast(an_int, obj) !FAIL: strict cast float->integer
  11. call err_print !show and clear error
  12. ierror = cast(fstr, obj) !FAIL: obj is a number, not a string
  13. call err_print !show and clear error
  14. ierror = cast_nonstrict(an_int, obj) !OK, truncates float (an_int = 3)
  15. ierror = cast_nonstrict(fstr, obj) !OK, result is string "3.14"
  16. write(*,*) an_int
  17. write(*,*) fstr
  18. call obj%destroy
  19. call forpy_finalize
  20. end program

Python 2 support

Requirements: Python version >= 2.7

For Python 2 support, you have to define the preprocessor macro PYTHON2 (compiler option -DPYTHON2).

  1. gfortran -c -DPYTHON2 forpy_mod.F90
  2. gfortran intro_to_forpy.F90 forpy_mod.o `python2-config --ldflags`

Note that here, you use python2-config.

If python2-config is not present on your system, install the package
python-dev (Ubuntu, Debian).

On a 32-bit system use the macro PYTHON2_32

  1. gfortran -c -DPYTHON2_32 forpy_mod.F90
  2. gfortran intro_to_forpy.F90 forpy_mod.o `python2-config --ldflags`

On a narrow Python 2 build (Windows, Mac?), add PYTHON_NARROW:

  1. gfortran -c -DPYTHON2 -DPYTHON_NARROW forpy_mod.F90
  2. gfortran intro_to_forpy.F90 forpy_mod.o `python2-config --ldflags`

“Narrow” Python builds use 2 bytes for Unicode characters, wereas
“wide” builds use 4 bytes. This distinction is not relevant
when using forpy with Python 3.

Developing Python modules in Fortran

With forpy, you can not only use Python from Fortran, but also write
Python modules in Fortran, using all the Python datatypes you like.

Note that now we have to build a shared library and the commands for
building are different.
Save the example below as extexample01.F90 and build with:

  1. gfortran -c -fPIC forpy_mod.F90
  2. gfortran -shared -fPIC -o extexample01.so extexample01.F90 forpy_mod.o

The following module extexample01 will have one method print_args and a
numerical constant pi as members:

  1. module extexample01
  2. use forpy_mod
  3. use iso_c_binding
  4. implicit none
  5. ! You need to declare exactly one PythonModule and PythonMethodTable
  6. ! at Fortran module level
  7. type(PythonModule), save :: mod_def
  8. type(PythonMethodTable), save :: method_table
  9. CONTAINS
  10. ! Initialisation function for Python 3
  11. ! called when importing module
  12. ! must use bind(c, name="PyInit_<module name>")
  13. ! return value must be type(c_ptr), use the return value of PythonModule%init
  14. function PyInit_extexample01() bind(c, name="PyInit_extexample01") result(m)
  15. type(c_ptr) :: m
  16. m = init()
  17. end function
  18. ! Initialisation function for Python 2
  19. ! called when importing module
  20. ! must use bind(c, name="init<module name>")
  21. ! Initialisation function for Python 2
  22. ! called when importing module
  23. ! must be called init<module name>
  24. subroutine initextexample01() bind(c, name="initextexample01")
  25. type(c_ptr) :: m
  26. m = init()
  27. end subroutine
  28. function init() result(m)
  29. type(c_ptr) :: m
  30. integer :: ierror
  31. type(object) :: pi
  32. ierror = forpy_initialize()
  33. call method_table%init(1) ! module shall have 1 method
  34. ! must add function print_args to method table to be able to use it in Python
  35. call method_table%add_method("print_args", & ! method name
  36. "Prints arguments and keyword arguments", & !doc-string
  37. METH_VARARGS + METH_KEYWORDS, & ! this method takes arguments AND keyword arguments
  38. c_funloc(print_args)) ! address of Fortran function to add
  39. m = mod_def%init("extexample01", "A Python extension with a method and a member.", method_table)
  40. ! Example: Numerical constant as member of module
  41. ierror = cast(pi, 3.141592653589793d0)
  42. ierror = mod_def%add_object("pi", pi)
  43. call pi%destroy
  44. end function
  45. ! Implementation of our Python method
  46. !
  47. ! Corresponding Python method shall allow arguments and keyword arguments
  48. ! -> We need 3 "type(c_ptr), value" arguments
  49. ! First arg is c_ptr to module, second is c_ptr to argument tuple
  50. ! third is c_ptr to keyword argument dict
  51. ! Return value must be type(c_ptr)
  52. ! bind(c) attribute to make sure that C calling conventions are used
  53. function print_args(self_ptr, args_ptr, kwargs_ptr) result(r) bind(c)
  54. type(c_ptr), value :: self_ptr
  55. type(c_ptr), value :: args_ptr
  56. type(c_ptr), value :: kwargs_ptr
  57. type(c_ptr) :: r
  58. type(tuple) :: args
  59. type(dict) :: kwargs
  60. type(NoneType) :: retval
  61. integer :: ierror
  62. ! use unsafe_cast_from_c_ptr to cast from c_ptr to tuple/dict
  63. call unsafe_cast_from_c_ptr(args, args_ptr)
  64. call unsafe_cast_from_c_ptr(kwargs, kwargs_ptr)
  65. r = C_NULL_PTR ! in case of exception return C_NULL_PTR
  66. if (is_null(kwargs)) then
  67. ! This is a check if keyword arguments were passed to this function.
  68. ! If is_null(kwargs), kwargs is not a valid Python object, therefore
  69. ! we initialise it as an empty dict
  70. ierror = dict_create(kwargs)
  71. endif
  72. ierror = print_py(args)
  73. ierror = print_py(kwargs)
  74. ! You always need to return a Python object (as c_ptr) in the error free case.
  75. ! If you do not need a return value, return a Python None
  76. ! In case of an exception return C_NULL_PTR
  77. ierror = NoneType_create(retval)
  78. r = retval%get_c_ptr() ! need return value as c_ptr
  79. call args%destroy
  80. call kwargs%destroy
  81. end function
  82. end module

Python code to test the module:

  1. import extexample01
  2. extexample01.print_args("hello", 42, key="abc")
  3. print(extexample01.pi)

Developer info

Running tests

  1. cd tests
  2. make clean
  3. make runtests

For ifort use make FC=ifort and for testing with Python 2 use make PY_VERSION=2, e. g.
for ifort and Python 2:

  1. make PY_VERSION=2 FC=ifort

Developing forpy

Forpy is created from a template file. Therefore do not edit
forpy_mod.F90, but only forpy_mod.fypp. This template file has to be preprocessed using
Balint Aradi’s fypp.

Assuming that you have fypp in your current directory, type

  1. python fypp.py forpy_mod.fypp forpy_mod.F90

Building documentation

You can create documentation from the source code with Chris MacMackin’s
FORD documentation generator:

  1. ford forpy_project.md

Support for debug builds of Python

When using a debug build of Python, one has to define the preprocessor macro Py_DEBUG when compiling forpy.

Running tests with reference count checks

You can run the forpy test suites such that the difference of the total reference count of Python objects
before and after each test is printed. This helps with detecting reference counting bugs. To do this you need
a debug build of Python and a debug build of numpy. Then build the tests with:

  1. cd tests
  2. make clean
  3. make PY_DEBUG=1

If the difference in total reference count is non-zero, the difference is printed before the test status. A
non-zero difference in total reference count does not necessarily mean that there is an error, for example due to
internal caching or deleted objects. On the other hand, a difference of zero does not guarantee absence of reference
count errors.

Notes

Using forpy with Anaconda

When using forpy with Anaconda and gfortran, you might encounter the following error:

  1. /usr/bin/x86_64-linux-gnu-ld: error: lto-wrapper failed
  2. collect2: error: ld returned 1 exit status

1) A solution to this problem is to add the -fno-lto (disable link-time optimisation) compiler flag in the linking step:

  1. gfortran -c forpy_mod.F90
  2. gfortran intro_to_forpy.F90 forpy_mod.o -fno-lto `python3-config --ldflags`

2) OR: Another solution is to use the gfortran compiler provided by the Anaconda distribution.
(Install on Linux with conda install gfortran_linux-64)

See Anaconda compiler tools