项目作者: vanessaaleung

项目描述 :
Ads Click-Through-Rate Prediction
高级语言: Jupyter Notebook
项目地址: git://github.com/vanessaaleung/ad-ctr-prediction.git
创建时间: 2020-06-05T19:01:03Z
项目社区:https://github.com/vanessaaleung/ad-ctr-prediction

开源协议:

下载


Ads Click-Through-Rate Prediction

Predict ads click-through-rate on a user-ads category level. Check the presentation deck here.

Data

Ad Display/Click Data on Taobao.com

This dataset is provided by Alimama and contains 1.14 million users behavior on Taobao.com platform.

Table Description Feature
raw_sample raw training samples User ID, Ad ID, nonclk, clk, timestamp
ad_feature Ad’s basic information Ad ID, campaign ID, Cate ID, Brand
user_profile user profile User ID, age, gender, etc
raw_behavior_log User behavior log User ID, btag, cate, brand, timestamp

Data Preprocessing

We used BigQuery to sample 5 million users from the dataset and merge all the tables.

Exploratory Data Analysis

Models

Deep Interest Network

It introduces a local activation unit, with which the representation of user interests varies adaptively
given different candidate ads.