项目作者: Ximilar-com

项目描述 :
Minimalistic TensorFlow2+ deep metric/similarity learning library with loss functions, miners, and utils as embedding projector.
高级语言: Python
项目地址: git://github.com/Ximilar-com/tf-metric-learning.git
创建时间: 2020-07-10T07:22:31Z
项目社区:https://github.com/Ximilar-com/tf-metric-learning

开源协议:MIT License

下载


tf-metric-learning

TensorFlow 2.2 Python 3.6

Overview

Minimalistic open-source library for metric learning written in TensorFlow2, TF-Addons, Numpy, OpenCV(CV2) and Annoy. This repository contains a TensorFlow2+/tf.keras implementation some of the loss functions and miners. This repository was inspired by pytorch-metric-learning.

Installation

Prerequirements:

  1. pip install tensorflow
  2. pip install tensorflow-addons
  3. pip install annoy
  4. pip install opencv-contrib-python

This library:

  1. pip install tf-metric-learning

Features

  • All the loss functions are implemented as tf.keras.layers.Layer
  • Callbacks for Computing Recall, Visualize Embeddings in TensorBoard Projector
  • Simple Mining mechanism with Annoy
  • Combine multiple loss functions/layers in one model

Open-source repos

This library contains code that has been adapted and modified from the following great open-source repos, without them this will be not possible (THANK YOU):

TODO

  • Discriminative layer optimizer (different learning rates) for Loss with weights (Proxy, SoftTriple, …) TODO
  • Some Tests 😇
  • Improve and add more minerss

Examples

  1. import tensorflow as tf
  2. import numpy as np
  3. from tf_metric_learning.layers import SoftTripleLoss
  4. from tf_metric_learning.utils.constants import EMBEDDINGS, LABELS
  5. num_class, num_centers, embedding_size = 10, 2, 256
  6. inputs = tf.keras.Input(shape=(embedding_size), name=EMBEDDINGS)
  7. input_label = tf.keras.layers.Input(shape=(1,), name=LABELS)
  8. output_tensor = SoftTripleLoss(num_class, num_centers, embedding_size)({EMBEDDINGS:inputs, LABELS:input_label})
  9. model = tf.keras.Model(inputs=[inputs, input_label], outputs=output_tensor)
  10. model.compile(optimizer="adam")
  11. data = {EMBEDDINGS : np.asarray([np.zeros(256) for i in range(1000)]), LABELS: np.zeros(1000, dtype=np.float32)}
  12. model.fit(data, None, epochs=10, batch_size=10)

More complex scenarios:

Features

Loss functions

Miners

  • MaximumLossMiner [TODO]
  • TripletAnnoyMiner ✅

Evaluators

  • AnnoyEvaluator Callback: for evaluation Recall@K, you will need to install Spotify annoy library.
  1. import tensorflow as tf
  2. from tf_metric_learning.utils.recall import AnnoyEvaluatorCallback
  3. evaluator = AnnoyEvaluatorCallback(
  4. base_network,
  5. {"images": test_images[:divide], "labels": test_labels[:divide]}, # images stored to index
  6. {"images": test_images[divide:], "labels": test_labels[divide:]}, # images to query
  7. normalize_fn=lambda images: images / 255.0,
  8. normalize_eb=True,
  9. eb_size=embedding_size,
  10. freq=1,
  11. )

Visualizations

  • Tensorboard Projector Callback
  1. import tensorflow as tf
  2. from tf_metric_learning.utils.projector import TBProjectorCallback
  3. def normalize_images(images):
  4. return images/255.0
  5. (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.cifar10.load_data()
  6. ...
  7. projector = TBProjectorCallback(
  8. base_model,
  9. "tb/projector",
  10. test_images, # list of images
  11. np.squeeze(test_labels),
  12. normalize_eb=True,
  13. normalize_fn=normalize_images
  14. )