项目作者: uttgeorge
项目描述 :
Machine Learning Algorithms from scratch
高级语言: Jupyter Notebook
项目地址: git://github.com/uttgeorge/Machine-Learning-Models.git
Machine Learning
This is the combination of some algorithms and codes from scratch.
Please use Chrome with MathJax plugin.
Email: jin.qi1@northeastern.edu
Topics | Introductions | Codes |
1. Math | 1. Bayesian Estimation, MLE, MAP 2. Exponential Family Distribution
3. Quadratic Form & Quadratic Matrix Defferentiating
4. Jacobian & Hessian Matrix
5. Gradient Descent
6. Newton’s Method & Quasi-Newton
7. EM | |
2. Evaluation Metrics | 1. Classification 中文 2. Regression
| |
3. Perceptron | Perceptron | Perceptron Code |
4. Linear Regression(Not finished) | | |
5. KNN | KNN | KNN Classifier: mnist handwriting recognition |
6. Decision Tree | Decision Tree: Feature Selection, Build Tree, Pruning | 1. Decision Tree Classifier 2. Decision Tree Regressor |
7. Logistic Regression | Logistic Regression | Logistic Regression Classifier |
8. Naive Bayes | Naive Bayes Intro | Naive Bayes Classifier: GaussianNB, MultinomialNB, BernoulliNB |
9. Bagging | Random Forest | |
10. Boosting | 1. Adaboost Classifier
2. GBDT
3. XgBoost(Not Finished) | Adaboost Classifier Code |
11. SVM | SVM: Duality, KKT, Hard Margin, Soft Margin, SMO | Linear SVM Code |
12. Kernel Methods | Kernels (Not Finished) | Kernel SVM (Not Finished) |
13. Dimensionality Reduction | 1. PCA, SVD, PCoA, PPCA
2. Linear/Fisher Discriminant Analysis | 1. PCA 2. SVD
|
14. L1, L2 Regularization | L1, L2 Regularization |
|
15. HMM | HMM |
|
16. CRF | CRF |
|
17. NLP | 1. Word Embedding 2. Language model, RNNs, GRU & LSTM |
|
References
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An introduction to statistical learning: with applications in R. New York: Springer.
- Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer New York, 2016.
- StatQuest with Josh Starmer. https://statquest.org
- Jie Zhou: https://github.com/shuhuai007/Machine-Learning-Session