Calculate the maximum width of Binary Tree
Given a binary tree, write a function to get the maximum width of the given tree. The width of a tree is the maximum width among all levels. The binary tree has the same structure as a full binary tree, but some nodes are null.
The width of one level is defined as the length between the end-nodes (the leftmost and right most non-null nodes in the level, where the null nodes between the end-nodes are also counted into the length calculation.
Example 1:
Input:
1
/ \
3 2
/ \ \
5 3 9
Output: 4
Explanation: The maximum width existing in the third level with the length 4 (5,3,null,9).
Example 2:
Input:
1
/
3
/ \
5 3
Output: 2
Explanation: The maximum width existing in the third level with the length 2 (5,3).
Example 3:
Input:
1
/ \
3 2
/
5
Output: 2
Explanation: The maximum width existing in the second level with the length 2 (3,2).
Example 4:
Input:
1
/ \
3 2
/ \
5 9
/ \
6 7
Output: 8
Explanation:
The maximum width existing in the fourth level with the length 8 (6,null,null,null,null,null,null,7).
Note: Answer will be in the range of 32-bit signed integer.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
class Node {
TreeNode treeNode;
int position;
Node(TreeNode treeNode, int position) {
this.treeNode = treeNode; this.position = position;
}
}
public int widthOfBinaryTree(TreeNode root) {
if(root == null)
return 0;
Queue<Node> q = new LinkedList<>();
int maxWidth = 1;
q.add(new Node(root, 0));
while(!q.isEmpty()) {
int size = q.size();
int left = 0, right = 0;
for(int i = 0; i < size; i++) {
Node node = q.remove();
if(i == 0)
left = node.position;
if(i == size-1)
right = node.position;
if(node.treeNode.left != null)
q.add(new Node(node.treeNode.left, 2 * node.position));
if(node.treeNode.right != null)
q.add(new Node(node.treeNode.right, 2 * node.position + 1));
}
int width = (right - left) + 1;
maxWidth = Math.max(maxWidth, width);
}
return maxWidth;
}
}
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
int maxWidth = 0;
Map<Integer, Integer> leftmostNodePosition = new HashMap<>();
public int widthOfBinaryTree(TreeNode root) {
if(root == null)
return 0;
dfs(root, 0, 0);
return maxWidth;
}
public void dfs(TreeNode root, int depth, int position) {
if (root == null) return;
leftmostNodePosition.putIfAbsent(depth, position);
maxWidth = Math.max(maxWidth, position - leftmostNodePosition.get(depth) + 1);
dfs(root.left, depth + 1, 2 * position);
dfs(root.right, depth + 1, 2 * position + 1);
}
}