项目作者: albert-espin

项目描述 :
Random Forest Classifier
高级语言: Python
项目地址: git://github.com/albert-espin/random-forest.git
创建时间: 2020-02-05T18:02:59Z
项目社区:https://github.com/albert-espin/random-forest

开源协议:Other

下载


Random Forest Classifier

The Random Forest classifier was introduced by Leo Breiman from University of California in 2001 [1]. The innovative characteristic of this algorithm is the usage of a set of decision trees that consider only a random subset of features for each split node, and classify new instances according to the majority vote of each tree.

The objective of this work is the evaluation of the a custom implementation of Random Forest for classification tasks using different combinations of hyper-parameters, applied it to 5 data sets of different sizes and features. The accuracy of each trained model is computed, as well as the importance of each feature.

[1] Breiman L. (2001). Random Forests. Machine Learning, 45(1), 5-32.

Author Albert Espín (except datasets, gathered from UCI’s Machine Learning repository)
Date April 2019
Code license MIT
Report license Creative Commons Attribution, Non-Commercial, Non-Derivative
Dataset licence Licenses specified for each dataset in UCI’s Machine Learning repository

Main pseudo-codes